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Abstract 
This work presents an uncertainty analysis of a comprehensive model for an electrostatic MEMS switch.  

The goal is to elucidate the effects of parameter variations on certain performance characteristics.  A 
sufficiently detailed model of an electrostatically actuated beam is developed.  This model accounts for 

various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film 

damping, and contact between the beam and the dielectric layer.  The performance characteristics of 
immediate interest are the static and dynamic pull-in voltages for switch.  Using Latin Hypercube and 

other sampling methods, the model is evaluated to find these performances characteristics when variability 

in the model’s geometric and physical parameters is specified.  Response surfaces of these results were 
constructed via Multivariate Adaptive Regression Splines (MARS).  Using a Direct Simulation Monte 

Carlo (DSMC) technique on these response surfaces gives smooth PDF’s of the outputs.  The relative 

variation in output due to each input is used to determine the critical parameters. 

1 Introduction/Motivation 

Micro-ElectroMechanical Systems (MEMS) have shown significant promise as high performance 

components in RF systems, mass sensors, gyroscopes, accelerometers, and other applications.  Among RF 

MEMS there are switches, filters, mixers and other components [1].  Of these, switches are the most 
common and the focus of this work.  RF MEMS switches offer superior performance to solid-state devices 

in terms of loss and isolation although being mechanical components means much slower switching 

speeds compared to silicon devices.  This trade off is acceptable in many applications and the hope of 

better insertion loss and isolation has driven MEMS switch research.  Despite creating many designs with 
good switching characteristics, limited life and early failure has plagued MEMS switches.  Although there 

have been switches that last into the billions and even trillions of cycles, most switches, even those from 

the same batch don’t last nearly this long and many don’t work at all.  The manufacturing tolerances in 
MEMS are notoriously poor and additionally the effects that parameters variations have on device 

behavior are poorly understand.  The result is that switch performance and life time are difficult to control 

or predict.  Understanding the effects of these deviations is important for predicting the ranges of 
performance exhibited by a fabricated design which can vary significantly from the nominal design.  

Uncertainty Quantification also permits prediction of device yield and is a first step towards predicting 

switch lifetime. 

The system considered in this work is one of the most common structures in RF MEMS.  It is a capacitive 

switch in the form of an electrostatically actuated clamped-clamped beam.  In this geometry the RF signal 

that is to be switched propagates along a coplanar waveguide (CPW).  The center conductor of the CPW 

passes under a flexible beam in a structure that is reminiscent of a free-way overpass.  The section of 
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conductor under the beam is protected by a thin dielectric coating.  When there is no DC bias between the 

conductor and the beam, there exists a gap between the dielectric coating and the bottom of the beam.  In 

this configuration the capacitance of the conductor-beam system is low and as a result a RF signal can 
propagate freely under the beam.  When sufficient DC-bias exists between the beam and the conductor, 

the oppositely charged conductor and beam experience enough attractive force that the flexible beam will 

deflect downward and make contact with the dielectric coating.  The capacitance in this configuration is 

typically between 2 and 3 orders of magnitude larger that than in the un-deflected state.  For the right 
range of frequencies this increase in capacitance will appear as an electrical short circuit and the RF signal 

will not propagate forward but rather be deflected backwards along the CPW.  Thus a reflective, 

capacitive RF switch is created.  There are other geometries of switches as well but this geometry remains 
popular for its relative ease of manufacturing and actuation.   

The dynamic process of motion of the switch involves many physical effects including elastodynamics, 

fluid dynamics, and electromagnetism.  The multi-physics nature of this problem can make analysis very 
difficult and has resulted in significant scientific interest.  Additionally, unlike macroscopic systems, 

where fabrication error in dimensions can be as little as 0.1% in the basic manufacturing equipment such 

as mills and lathes, micro-scale systems commonly experience geometric deviations up to around 30%.  
These wide ranges can results in poor device yield and large deviations in performance characteristics.  

Understanding the effects of these variations is becoming increasingly critical.  

This paper is further organized into four main sections: literature review, multi-physics modeling of the 
switch, methods for uncertainty quantification (UQ methods), and results and discussion.  The literature 

review contains a high-level overview of the multi-physics modeling of MEMS switches, some relevant 

literature on techniques of uncertainty analysis, and their recent applications in MEMS.  Then, the model 

of a clamped-clamped beam moving in a fluid medium, when actuated by electrostatic forces, is 
developed.  This is followed by a solution methodology in the form of a reduced-order model.  The section 

on UQ methods presents details on the sampling methods used in this work and the response surfaces 

developed to characterize the uncertainties in predictions of the performance characteristics of the switch.  
The results section finally gives details of some of the predictions for an example device.  The findings of 

the work are then briefly summarized in the conclusions. 

2 Literature Review 

The literature on MEMS has become quite extensive.  Here we offer a brief review of the literature on 

MEMS modeling, specifically the mechanical behavior of electrostatically actuated beams, as well some 

of the UQ efforts in MEMS designs. 

2.1 Structural Mechanics 

The most basic description of the electrostatically actuated MEMS model is the single degree of freedom 
approximation.  In this model, the mechanical movement of the beam is approximated as that of a lumped 

mass attached to a spring (see Fig. 1).  This basic approach is still useful [2] and is a common educational 

example of the system at hand as it demonstrates some of the unusual behavior unique to these systems, 

namely the phenomenon of pull-in.  The most basic model of the system in Fig. 1 can be expressed as 
(assuming no dielectric): 

  (1)  

Here, M and K are the mass and linear stiffness of the lumped parameter system, x is the displacement of 

the mass, tair is the air gap, and td is the thickness of the electrode.  As the applied voltage is slowly 

increased, the static deflection of the mass increases and the corresponding gap between the mass element 
and the dielectric decreases.  The biggest stable static solution with the highest corresponding voltage 



occurs at .  The implication of this is that when the voltage of the system is slowly increased, the 

beam-mass will descend until reaching one third the gap, at which point it will move down rapidly, close 
the switch and impact the substrate.  This sharp transition from up to down state occurs as the linearly 

increasing restorative force increases with x slower than the rational electrostatic force.  This is called 

pull-in and occurs at the associated pull-in voltage.  This is essentially the voltage required to actuate the 
switch and is a very important performance metric.  

Although some of the elements of the simple SDOF model do not hold for a more accurate beam 

model, the qualitative pull-in behavior remains the same.  The beam system under consideration is shown 
in Fig 2.  In this setup it is possible to included realistic models of residual stresses in the beam (which are 

common in MEMS manufacturing processes) as well as non-linear effects such as beam stretching.  This 

formulation has received attention from many researchers [3, 4].  In this model, the beam is modeled as a 

thin continuum and the model is typically solved with either a finite element technique or via a reduced 
order model where the motion of the beam is represented by a linear combination of fundamental mode 

shapes.  The present work uses the latter formulation. 

There has also been significant work with fully 3D finite element models [5].  These allow high 

fidelity modeling of the systems at hand but are encumbered by being computationally expensive.  

  

 

Figure 1. Single-degree-of-freedom equivalent system for a switch 

2.2 Electrostatic modeling 

The electrostatic force between the beam and the electrode is most commonly represented as the force 

between a parallel plate capacitor.  In the case of the SDOF model the force is expressed as: 

 
 (2)  

Almost all 2D models make the assumption that the electric field lines run in the cross section planes of 
the beam resulting in a similar expression for the electrostatic force. 

The parallel plate model is sometimes appropriate but more often than not there is a fringing electrostatic 

field at the edges of the beam that can contribute non-negligibly to the electrostatic force.  There exist 
many corrections for this fringing field.  Many of the result come from earlier works to determine the line-

capacitance of micro-strip line wave guides [6] as the geometry is analogous.  Other works have focused 

on creating compact models that correct for the fringing field based on fitting simulations [7] or analytical 
methods [8].  Some of the more recent models, such as that of Batra et al. [7] are generally accurate to 

within 2% (as compared to finite element solutions of the electrostatics problem).  These corrections still 



don’t capture the fringing field that is not in the plane of the beam cross section such as fringing field 

between the edges of the CPW and the bottom of the beam.  Also, these devices are commonly 

manufactured on a silicon substrate which has a very high dielectric constant.  The difference in dielectric 
constant between the substrate and the open gap can significantly distort the electric field. 

2.3 Squeeze Film Damping 

Damping plays a large role in the dynamic behavior of MEMS devices.  It affects switching time, switch 

bounce, and may also play a large role in determining the lifetime.  It is theorized that the repeated contact 

of a MEMS switch with the substrate causes damage that contributes to failure [9].  The damping force 
that a switch experiences, especially near contact, affects the speed with which it impacts the substrate.  

There are many mechanisms of damping in MEMS, the most prominent of them being the gas damping 

[1].  The simplest of models for gas damping in MEMS is the linear viscous damping approximation.  This 
model does see use but is a crude approximation when the gap is changing significantly.  As the gap 

becomes small, the squeezing effect becomes very significant.  In addition to a damping force, the gas 

dynamics in MEMS can then contribute other effects including an entrained (added) mass effect due to 

moving of the gas with the beam [10], and an additional spring force (added stiffness) when the gas is 
compressed quickly [11].  

 

 

Figure 2. Diagram and nomenclature of beam model for a MEMS switch 

2.4 UQ and Probabilistic Design in MEMS 

In general, it is recognized that there are two distinct types of uncertainties present in physical models.  

One type is model uncertainty, also known as ‘epistemic’ uncertainty.  This is the error that exists in the 

model, that is, how close or far the model is from reality.  The other is parameter uncertainty, also known 

as ‘aleatoric’ uncertainty.  This is associated with the lack of complete knowledge of input parameters, 
that is, how far they are from nominal and what is the nature of their variability or uncertainty.  This work 

is concerned only with the latter.  Given some uncertainty in the model parameters, one needs to 

understand their effect on the predictions of the model, and this is accomplished by propagating 
uncertainty through the model, that is, developing the variability in the prediction. 

Monte Carlo methods are the most straightforward and easy to implement for developing stochastic 

description of the output of a simulation model with uncertainty in parameters.  These methods are easy to 
understand, and by definition the results (computed statistics) converge to the correct answer.  However, 

the associated computations become prohibitive as the accuracy of a MC analysis is directly related to the 

number of samples and accurate models of MEMS devices are often prohibitively expensive from a 
computational standpoint.  To circumvent this difficulty, more advanced methods have been developed.  

Agarwal and Aluru [12] employed a generalized polynomial chaos (gPC) method to characterize the 



variability in pull-in voltage of MEMS.  In their work, they successfully used a quadrature sampling 

approach to find the mean and standard deviation of MEMS performance characteristics like pull-in 

voltage that matches Monte Carlo analysis results with even with significantly fewer samples.  
Shanmugavalli et al. used interval analysis to find ranges of static pull-in voltage based on ranges of inputs 

[13]. 

Quite distinct from the Monte Carlo and generalized polynomial chaos techniques are the response 
surface/surrogate model approaches used when the original simulation model is very computationally 

intensive.  Then, the model under consideration is supplanted with a surrogate model, which though non-

physical, yields close to correct numerical results within the parameters space at much less computational 

cost.  A sufficient number of samples points from the actual model are needed to construct the response 
surface.  Attempting to construct a surrogate model from insufficient data can lead to erroneous results 

[14].  Once the surrogate model is created, Monte Carlo analysis on the surrogate model yields output 

distributions.  

Generating samples to create the response surface is a very important part of the uncertainty quantification 

process and there are a number of ways to do it.  Though one can again use the Monte Carlo approach, 

significant gains are to be had by sampling more intelligently.  The ideal sampling is sparse (requiring few 
model runs), covers the whole input space (so as to not miss any features), is evenly spaced (to avoid 

redundancy), and non-periodic (to avoid aliasing).  While Monte Carlo technique is easy to implement and 

meets the first and last requirements, it tends towards bunching as well as empty space.  The next easiest 
sampling routine to implement is tensor-grid, wherein the input/parameter space is divided into a 

rectilinear grid and every grid point is a sample point.  When the points are finely spaced, the data looks 

exactly like the underlying function. This approach becomes computationally prohibitive when one 

considers higher dimensional problems, e.g., it’s rather common for a model under consideration for UQ 
to have 10 or more inputs, sometimes up to 100 even.  Consider a problem with 20 inputs with the input 

space normalized to a 20-dimensional hypercube.  Even if one were to choose a grid spacing of 1, that is, 

only the corners (which would look hopeless in a 2-d plot) one still requires over a million model 
evaluations.  This is the ‘curse of dimensionality’ and illustrates the difficulty of intelligently sampling in 

higher dimensional spaces.  

Latin Hypercube (LHS) is one of the most popular sampling methods.  Originally proposed by McKay et 

al. [15], this method consists of dividing the each of the  inputs into  bins and distributing s points such 

that each bin for each input contains only one point.  This is a significant improvement over Monte Carlo 

sampling but it still isn’t full-proof (for example, all of the sample points in a line from one corner of the 
hypercube to the distant corner satisfies these requirements).  There are many improvements to the basic 

LHS method; optimizing LHS sampling method by some distance criterion [16] and orthogonal arrays 

which have additional space-filling criterion are two popular options.  There are a multitude of other 

sampling algorithms that have been used successfully.  Many of these sampling approaches useful for 
uncertainty quantification have been implemented in a software toolbox PSUADE (Problem Solving 

Environment for Uncertainty Analysis and Design Exploration) written at Lawrence Livermore National 

Laboratories.  The PSUADE manual [16] gives a useful summary of these refinements. 

2.4.1 Response Surfaces 

Given data of the underlying function there is multitude of ways to generate response surfaces.  In general 
it is a good idea to choose a method that is appropriate for the underlying sampling method and model. For 

example a polynomial response surface would be appropriate for a quadrature rule sampling. Response 

surfaces should also be fast to evaluate (but not necessarily to create, creation can be intensive) and be 

able to function with noisy data and outliers. MARS stands for Multivariate Adaptive Regression splines 
and is the response surface method used in this work. It is discussed in more detail later in the methods 

section. Again, the PSUADE manual [16] is a good reference for this and other response surfaces 

methods. 



3 Beam (Switch) Modeling 

A thorough beam model that incorporates residual stress, non-ideal boundary conditions, non-linear 
stretching, and corrections for plate-like bending is developed here in a step-by-step process.  It also 

accounts for models for damping, the electrostatic force as well as possible contact with the substrate.  The 

following section covers the use of the Galerkin method to render the resulting PDE into a system of 

ODEs and the methodology for the solution of these ODE’s. 

3.1 Structural Dynamics 

We begin with the simplest case, that of a straight, unstressed Euler-Bernoulli beam as show in Fig. 2.  

The equation of motion for free transverse motions of an unstressed, flat Euler-Bernouli beam [17] is 

given by 

  (3)  

This equation reflects only the inertia of the beam and the restorative bending force.   

3.1.1 Residual Stresses 

Manufacturing processes in MEMS can create significant residual stresses in beam materials.  These 

stresses can manifest as tensile or compressive load and it is important to take them into account as they 

can significantly influence the dynamics of the beam.  Incorporating axial stress brings in a second 

derivative term [17] making the beam equation 

  (4)  

3.1.2 Stretching 

The axial stress in the beam is really a combination of the residual stress, which exists in the rest state, and 
axial stress due to stretching or compression of the beam.  Beam stretching introduces additional axial 

load dependent on the deflection of the beam and is the first non-linear element to the model.  The 

incorporation of the stretching requires an approximation of the changes in the arc-length of the beam.  
The EOM with stretching can be expressed as [3] 

  (5)  

3.1.3 Plate Stiffness Correction 

When a beam is very wide relative to its thickness, the bending stiffness is slightly more than  due to 

Poisson's ratio effects.  We adopt a correction for plate-like behavior in form of an effective Young's 
modulus: 

 
 

 
(6)  



This effective Young's modulus is used in place of E for the rest of the calculations. 

Obviously, this discontinuity in bending stiffness results in some inaccuracies.  In fact, the effective 

bending stiffness of a beam as its dimensions transit to those of a plate is a complicated problem that 
depends on more than the width-to-thickness ratio and does not have a simple answer [18].  As such we 

will accepts the errors from this approximation and keep it for its simplicity.  

3.1.4 Boundary Conditions 

MEMS beam anchors can never be truly rigid.  In certain geometries and manufacturing methods, the 

fixed boundary condition can be completely justifiable but in other conditions it may differ from reality 

significantly.  The pinned support with torsion-spring boundary condition is therefore more appropriate 
than the clamped boundary condition.  Using the torsion-spring boundary condition with a large spring 

constant effectively covers the truly fixed condition and in the limit when the spring constant goes to zero 

the end condition approximates a pinned end condition.  The pinned support with torsion-spring boundary 
condition can be expressed as 

 
 

 (7)  

where kt is the spring constant of the torsion spring. 

3.1.5 Electrostatic Forces 

The parallel-plate electrostatic force model was already introduced in equation (1), where the force is 

attractive.  The accuracy of the parallel-plate assumption is directly related to width of the beam with a 
wider beam better approximating a parallel plate.  For a narrower beam, a significant portion of its electric 

field emanates from its sides and top, making a parallel plate model inappropriate.  There are numerous 

corrections to the parallel-plate model to account for the fringing field.  Batra et al. [7] modeled the 

capacitance of a narrow microbeam with a modifying factor to the basic parallel-plate model.  This model 
of Batra et al. was chosen for its wide range of applicability.  In this model [7], the electrostatic force per 

unit length can be expressed as 

 
 

(8)  

where 

  (9)  

3.1.6 Finite Electrodes 

Many models assume the electrode and the beam to completely overlap, though this often does not reflect 

reality.  More frequently, the electrode is in the form of a micro-strip that only exists under a portion of the 

beam.  It is important to realize that in this case, there exists fringing field along the whole perimeter of 
the rectangular area of overlap between the beam and the electrode.  The model above accounts only for 

the fringing field between the sides of the beam and the top of the electrode, and not between the sides of 

the electrode and the bottom of the beam.  If the electrode exists under the beam from x = x1 to x = x2 as in 
Fig. 2, the electrostatic force can be expressed as 

 



 

 

(10)  

where H(x - a) is the Heaviside step function at x = a.  Note that this does not account for the fringing 
field between the sides of the electrode and the bottom of the beam.  It is possible to further refine the 

model by making x1 and x2 into effective end points that vary with the instantaneous geometry of the 

system, thereby more closely mimicking the true fringing field, though this is not done in present study.  

3.1.7 Damping Force 

Fluid damping is arguably the most difficult aspect of MEMS modeling and there is currently not a 

compact damping model in literature that incorporates the squeezing, gas rarefaction and surface effects 
required to accurately model a MEMS switch closing.  Two damping models were considered for 

inclusion, the basic viscous damping model and the compact squeeze film damping model by Guo and 

Alexeenko [19]. 

In the basic linear viscous damping model, the damping force per unit length is expressed as: 

  (11)  

This model is very easy to implement but is a poor approximation of the actual physics.  In reality, the 

increased damping at smaller gaps is very significant, and thus the use of the other damping model (due to 
Guo and Alexeenko [19]).  They modeled the squeeze film effect as a linear viscous damping where the 

coefficient of damping varies with the beam displacement.  Thus, 

  (12)  

The damping coefficient is derived by fitting a rational function to results of rarefied gas simulations for 

beams oscillating with small amplitudes at various rarefactions (as specified by Knudsen number): 

  (13)  

Note that the model is a velocity proportional damping model where the damping coefficient depends on 

the gap-separation.  Thus, the damping force is really a nonlinear function of beam displacement and 

velocity.  It should be noted that the damping force approaches infinity as the beam approaches contact.  
This is clearly non-physical as contact and bouncing are observed experimentally.  A simple correction of 

changing  in equation (13) to  to represent the effects of surface roughness was used to 

eliminate this singularity.  Although it does give nice results, it should be noted that this correction hasn’t 

been verified against other data or models. 

3.1.8 Impact Modeling 

A soft-impact contact model is employed here.  The impacted substrate acts as a stiff, distributed spring 
and thus the contact force term in the equation of motion is defined as: 

  (14)  

It should be noted that the impact will occur before the singularity in the electrostatic force.  Also, as we 

have defined the attraction of the beam to the electrode as the positive direction, and hence the minus sign 
in the contact force expression.  For the static case, the compression of the dielectric by charges on either 

side results in the above stiffness.  For the dynamic case, when the beam impacts the dielectric, the 



substrate is not truly rigid and finding a reasonable approximation to the stiffness is difficult.  This is a 

simple model that provides qualitative correct result, but it does not include surface roughness, adhesion 

or any of the more complicated surface effects that are relevant at the microscale.  As it turns out, this 
stiffness is so high that it makes results computed by varying the contact stiffness over orders of 

magnitude indistinguishable.  From a computational standpoint lower stiffness are preferable as they make 

the calculations more numerically stable. 

3.2 Complete Equation of Motion for the Switch 

After incorporating all of the above effects and their respective sub-models, we arrive at the general 
equation of motion for a switch: 

 

 

 

 

(15)  

where c(w) is the appropriate correction for squeeze film damping.  The next step is to make equation (15) 

more convenient by non-dimensionalizing it with the follow non-dimensional parameters; 

 
 

(16)  

The end result of this is the non-dimensionalized equation of motion is 

 

 

(17)  

where 

 

 

 

 

(18)  

Hats are dropped from this point forward for convenience. 



3.3 Solution Methodology 

In order to solve the beam model in equation (17), it is assumed that the solution can be approximated at 

any given time by a linear combination of the first M linear mode-shapes of the undamped and unforced 

microbeam.  The solution then takes the form 

  (19)  

As M becomes larger, the approximation and thus the solutions become more accurate.  However, as we 
will see, the convergence for the performance variables of static and dynamic pull-in voltage can be quite 

fast.  The mode-shapes are also normalized to obey the orthogonality property 

  (20)  

where  is the  i-th linear undamped mode of the beam with appropriate boundary conditions and  are 

time varying coefficients.  The mode shapes are the solutions to the equation: 

  (21)  

The boundary conditions for a fixed-fixed beam are the same as in the dimensional case. 

There exist closed-form expressions for the modal frequency equations and mode-shapes.  The formulas 

for a cantilever beam can be found in Rao [17] and many other sources.  The closed-form expressions for 

a fixed-fixed beam under axial tension can be found in Shaker [20].  The derivation of the mode shapes 

and frequency equations for a beam under tensile load with pinned ends and torsion spring conditions is 
given in an appendix of the first author’s thesis [21].  

3.3.1 Reduced Order Method 

We now apply the modal expansion by substituting equations (19) and (21) into equation (17).  

Multiplying the resulting expression by  and integrating from 0 to 1 yield the system of ODE's for the 

modal amplitudes.  The orthogonality condition in equation (20) results in simplifications of the inertia, 

bending stiffness, residual stress and stretching terms.  As for the remaining terms,  has been left as is 
rather than the modal sum form of equation (19), although the equivalence remains.  The final equations 

are:  

 

 

(22)  

where  

Considering equations (22) we can see that the system contains at most third-order terms.  The integrals in 

the summation terms do not vary with time and as such they may be used from a table when performing 

calculations.  This is not the case with the other integrals.  When integrating equations (22),  must be 
reassembled at every time step using the modal summation in equation (19), likewise the integral terms 

depending on  must be computed at every time step.  The main drawback of this formulation is the 

requirement to perform several space integrations at every time step.  There are methods to avoid this 



problem [3, 21] but they result in other inconveniences such as non-diagonal mass matrices, higher-order 

terms and difficult in representing non-linear effects such as squeeze film damping, fringing field and 

contact conditions. 

3.4 Model Verification 

Some deterministic results are presented in Table 1 where the static pull-in voltages computed by the 
above model are compared to results available in the literature.  The static pull-in voltage was already 

explained before and it is computed by finding static solution of the model.  The parameters are: 

m, m, m, m, m, , , GPa, , and 

. 

  

(MPa) (residual stress) 0 100 -25 

V(MEMCAD)[22] 39.13 57.62 39.63 

V [23] 40.10 57.60 33.60 

V    This model 39.21 57.75 32.79 

Table 1. Comparison of Static Pull-in Voltages predicted by different models. 

4 Uncertainty Quantification 

Using the model above, we now characterize the effects of input parameter variations on system 
performance.  Often in MEMS manufacturing processes, multiple features are made in the same 

processing step, and as such, some covariance in the parameter distributions is expected.  To allow for this 

in our analysis we have restricted the parameter variations to have normal distributions.  For a UQ 
analysis, we have defined two quantities of interest as the performance measures.  Now, we need to 

choose the number inputs to be varied.  It is possible, and most informative to perform the analysis with 

all parameters allowed to vary.  However this can be rather time consuming when the system depends on 

20+ parameters.  Often only the behavior and interactions of a few parameters are of interest and the rest 
can be left to their nominal values.  Next, using an appropriate sampling algorithm, a few hundred data 

points are computed from the model.  From these sample points, a function is created that closely 

approximates the actual predictions of the model.  This function, the ‘response surface’ is then used as a 
surrogate for the actual model.  Monte Carlo sampling can then be used on these response surfaces to find 

the PDF’s of outputs and the mathematical form of the response surfaces can be used to discern the 

relative important of the parameter variations. 

4.1 Defining Output Parameters of Interest 

In our UQ problem we first define the performance measures of interest.  For this work, we have chosen 
the static pull-in voltage and the dynamic pull-in voltage as the predictions of interest.  

The ‘Static Pull-in’ voltage is defined as the highest voltage at which there exists at least one equilibrium 

solution to the system not involving contact.  At a voltage any higher than this, the beam will pull-in and 
make contact.  The static pull-in voltage was found by first finding all of the pre-contact static solutions of 

the beam model.  The static solutions were found via an enforced displacement scheme.  In this scheme a 

specified (chosen) point on the beam is forced to have a given displacement.  To find the static solutions 
that passes through this point (and there always is one, assuming no buckling and a continuous actuation 

electrode), a Newton-Raphson scheme was used.  The highest voltage associated with one of these pre-

contact static solutions is returned as the pull-in voltage.  Details of the algorithm are given in [21]. 



A ‘Dynamic Pull-in’ voltage is defined as the amplitude of a step voltage applied to the system that causes 

it to close.  This voltage is smaller than the static pull-in voltage due to dynamic effects [4] typically by 

8% or so, but this can vary based on switch geometry.  The dynamic pull-in voltage is found via a 
bisection search method [21].  Initially, guesses are used to establish upper and lower bounds on the 

voltage where the beam does, and doesn’t pull-in, respectively.  Knowing that the actual voltage lies in 

this voltage interval, the interval is iteratively divided in two until sufficiently small.  The system is 

integrated with a step voltage that is in the middle of this interval.  Depending on the outcome of this 
integration, the upper or lower half of the previous interval becomes the new interval and the process 

repeated until the dynamic pull-in voltage is known to within a certain threshold, 10mV for example. 

4.2 Sampling Methods 

For the response surface generation, two sampling methods were used.  The first one was the straight 

forward Latin Hypercube sampling [15].  The second was an improved space filling design.  The space 
filling design consists of randomly seeding the parameter space with points and then evolving those points 

via a repulsive  model among the k-nearest neighbors.  If k is set to be all of the sample points, this is 

analogous to charges on a hypercube, and all of the points will migrate to the surface of the sample space.  
If k is set to roughly the dimension of the parameter space, the sampling will settle into some equilibrium.  

The result is analogous to a crystallization process, with periodic space-filling structure appearing.  

Periodicity isn’t something that is desired in sampling routines.  To eliminate this, 10-15% of the sample 

points were set as stationary.  This results in significantly reduced periodicity.  This sampling routine is 
discussed in more detail in [21]. 

The sampling routine used on the response surface is Monte Carlo.  The extremely fast evaluation times of 

the response surface functions made this feasible.  It is also easy to implement covariance with normally 
distributed Monte Carlo points. 

4.3 Response Surface Generation 

The technique used in this work to generate response surfaces is MARS [24] which has been implemented 

in PSUADE [16].  MARS stands for Multi-variate Adaptive Regression Splines.  The MARS technique 
was originally proposed by Friedman [24].  The technique consists of local regressions matched at their 

boundaries with ‘knot-functions’.  The model is built in 2 passes.  In forward pass, localized basis 

functions are added, progressively lowering the mean-squared error.  In the backwards pass, localized 

basis functions that contribute the least to error minimizations are removed.  This backwards pass reduces 
over-fitting of the model.  The results presented here have been computed with AREAlab [25], a 

MATLAB implementation of MARS.  Results have also been computed with PSUADE [16]. 

4.4 UQ –example 

We subject a switch model similar to the one considered in section 3.4 to the uncertainty analysis.  A 

fixed-fixed beam geometry is assumed, and the nominal parameters that may exhibit variability as well as  

 

       

Nominal 250 50 3 1 169 0 

Std. 1.5 .5 .25 .08 6 5 

Table 2. Nominal inputs and standard deviations for the switch parameters. 



their standard deviations assumed are given in Table 2.  Thus, there are six input parameters.  The non-

varying parameters are assumed to be: dielectric thickness, electrode extent, beam material density, 

dielectric constant, and the Poisson ratio.  Their values are 

  The response surfaces for this example were generated from 600 sample 

points.  K-fold cross-validation resulted in an averaged  of greater than 0.999 in both cases.  

Given this data, we would like to know the variability in the model predictions of interest, static and 

dynamic pull-in voltages.  Using the methods discussed previously, a sample of (500) points was taken of 
the +/- 4 standard deviations input space.  A response surface of pull-in data was generated with the 

MARS algorithm using the ARESlab toolbox.  To find a smooth PDF of pull-in voltages, 1e6 Monte Carlo 

samples were generated using the statistics in Table 2.  A histogram of the results is given in Fig. 3.  

 

Figure 3. Histogram of Static Pull-in Voltages: nominal= 64.09V, mean =64.05V, Std. =11.07V  

 

A similar analysis was performed for the dynamic pull-in voltage.  It is important to realize that not every 

switch realization is going to close at all.  Assuming an actual actuation voltage of 1.3 times the nominal 

static pull-in voltage, some switches may not pull-in at all.  A histogram of dynamic pull-in voltages given 
in Fig. 4 shows that 1.97% of switches in this case would fail to pull-in at all.  This is better than the 

5.00% percent that would be predicted if static pull-in voltage was used instead of dynamic pull-in 

voltage. 

 

Figure 4. Histogram of Dynamic Pull-In Voltages: nominal= 60.18V, mean =60.49V, Std. =10.26V  



4.4.1 Critical Parameter Identification 

It is also important to identify the critical parameters for the system, that is, the parameters that 

significantly influence the outputs of the model.  Here, critical parameters are identified by their 

sensitivities, taken at the nominal configuration, weighted by their standard deviations.  The sensitivities 

are found by taking partial derivatives of the surrogate function and multiplying those partial derivatives 
by the ranges given for the parameters.  This then represents a local sensitivity analysis of the model.  

These numbers are normalized to sum to one and thus we can express as the percent of variation due to 

certain parameters.  Obviously, this does not capture effects such as strong self-interactions or interactions 
with other variables but it does give a picture of the parameters that drive the problems at the first-order.  

This data is presented in Table 3. 

       

Static Pull-in 0.0381 0 0.408 0.390 0.059 0.103 

Dynamic Pull-in 0.0378 0 0.422 0.390 0.058 0.094 

Table 3. Normalized, weighted sensitivities of the pull-in voltages for a switch. 

5 Conclusion 

A thorough model of an electrostatically actuated MEMS beam was presented.  Distributions of output 

parameters were determined via a response surface approach.  Static and dynamic pull-in distributions 
were derived.  Using the dynamic pull-in voltage distributions, the yield of switches that would actuate 

under 1.3 times the nominal static pull-in voltage was determined.  The most critical parameters were 

found to be the switch thickness and air gap height.  This is because the system is very sensitive to these 

dimensions and vertical dimensions are typically among the most difficult to control. 
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