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Abstract. Modeling atomic and molecular systems requires computation-intensive quantum
mechanical methods such as, but not limited to, density functional theory (DFT) [11]. These methods
have been successful in predicting various properties of chemical systems at atomistic detail. Due to
the inherent nonlocality of quantum mechanics, the scalability of these methods ranges from O(N3)
to O(N7) depending on the method used and approximations involved. This significantly limits the
size of simulated systems to a few thousands of atoms, even on large scale parallel platforms. On
the other hand, classical approximations of quantum systems, although computationally (relatively)
easy to implement, yield simpler models that lack essential chemical properties such as reactivity and
charge transfer. The recent work of van Duin et al [9] overcomes the limitations of classical molecular
dynamics approximations by carefully incorporating limited nonlocality (to mimic quantum behavior)
through empirical bond order potential. This reactive molecular dynamics method, called ReaxFF,
achieves essential quantum properties, while retaining computational simplicity of classical molecular
dynamics, to a large extent.

Implementation of reactive force fields presents significant algorithmic challenges. Since these
methods model bond breaking and formation, efficient implementations must rely on complex dy-
namic data structures. Charge transfer in these methods is accomplished by minimizing electrostatic
energy through charge equilibriation. This requires the solution of large linear systems (108 degrees
of freedom and beyond) with shielded electrostatic kernels at each timestep. Individual timesteps
are themselves typically in the range of tenths of femtoseconds, requiring optimizations within and
across timesteps to scale simulations to nanoseconds and beyond, where interesting phenomena may
be observed.

In this paper, we present implementation details of sPuReMD (serial Purdue Reactive Molecular
Dynamics) program, a unique reactive molecular dynamics code. We describe various data struc-
tures, and the charge equilibration solver at the core of the simulation engine. This Krylov subspace
solver relies on an ILU-based preconditioner, specially targeted to our application. We comprehen-
sively validate the performance and accuracy of sPuReMD on a variety of hydrocarbon systems. In
particular, we show excellent per-timestep time, linear time scaling in system size, and a low memory
footprint. sPuReMD is available over the public domain and is currently being used to model diverse
systems ranging from oxidative stress in bio-membranes to strain relaxation in Si-Ge nanorods.

Key words. Reactive Molecular Dynamics, Bond Order Potentials, ReaxFF, Charge Equilibra-
tion.
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1. Introduction. Molecular-scale simulation techniques provide important com-
putational tools in diverse domains, ranging from biophysical systems (protein fold-
ing, membrane modeling, etc.) to materials engineering (design of novel materials,
nano-scale devices, etc.). These methods can model physical reality under extreme
conditions, not easily reproduced in laboratory. Conventional molecular simulation
methods range from quantum-scale to atomistic methods. Quantum-scale methods
are based on the principles of quantum mechanics, i.e., on the explicit solution of the
Schrödinger equation. The methods start from first principles quantum mechanics and
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make few approximations while deriving the solution. For these reasons, the quantum
dynamics methods are often referred as ab–inito methods. Because of their modeling
fidelity, ab–initio methods usually produce more accurate and reliable results than
atomistic methods.

Due to the non-locality of interactions in quantum mechanics, the high accuracy
of ab–initio methods comes at a high computational cost. Brute force approaches
to ab–initio calculations suffer from the exponential growth of computational com-
plexity with the number of electrons in the simulated system. Several approaches,
with varying degrees of complexity and accuracy, have been developed to solve ab–
initio problems (please refer to [11] for an excellent review). These approaches are
broadly classified into two categories: (i) wavefunction-based approaches (which in-
clude Hartree-Fock (HF), second-order Moller-Plesset perturbation theory (MP2),
coupled cluster with single, double, and triple perturbative excitations (CCSD(T)),
complete active space with second-order perturbation theory (CASPT2) as the more
popular ones), and (ii) density functional theory (DFT) based approaches. Even with
the approximations to reduce computational costs, ab–initio methods do not scale well
with the system size; N being the number of electrons, CCSD(T) scales as N7, MP2
as N5, and localized variants of MP2 can bring the scaling factor down to N3, mak-
ing thousand atom simulations feasible. DFT based methods such as Car-Parrinello
molecular dynamics (CPMD), CASTEP, and Vienna Ab-initio Simulation Package
(VASP) are still methods of choice for medium to large scale systems, since they can
deliver better accuracy and performance in most cases [11].

The high computational cost associated with ab–initio methods restrict their
applicability to the systems on the order of thousands of atoms and few picoseconds
of simulation time. For many real-life problems, systems of this length and time
scale are rarely sufficient to observe the phenomena of interest. Techniques such
as atomistic simulations based on empirical force fields are developed to overcome
this system size limitation. Empirical force fields model the nuclear core together
with its orbital electrons as a single basis, thus making the problem “local”. Since
electrons are not treated explicitly, their roles and effects are approximated by means
of functional forms and parameters. Often, empirical force fields are dependent on a
large number of tunable parameters. Evaluation of these parameters is a critical step
in the modeling process. Due to the correlations between virtually all the parameters,
development of a high-quality force field is usually a very tedious task. Typically, all
parameters are tuned iteratively to match well-studied experimental properties of the
target sub-system of the real system. Once this task is accomplished, resulting force
field parameters can be used in simulations of systems that reflect real-life scenarios.

MD methods produce snapshots of the time-evolution of the input system using
Newton’s laws of motion. While it may be argued that an MD simulation would
deviate significantly from the target system’s real trajectory due to significant sim-
plifications and approximations, along with numerical errors associated with imple-
mentations, MD methods find their basis in the fundamental postulate of classical
statistical mechanics: “All states accesible to the system and having a prescribed
energy, volume and number of particles are equally likely to be visited in the course
of time (the ergodic hypothesis)” [12]. Consequently, even though we cannot hope
to capture real trajectories from MD simulations, we can still compute ensembles
of snapshots for physically accessible configurations of systems. This allows us to
use ideas from statistical thermodynamics to study time-averaged properties such as
density, temperature, and free energies.
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While traditional atomistic modeling techniques are successful in reproducing fea-
tures of real systems to varying degrees, they are limited in many respects. Some of
these limitations are as follows: (i) due to specific parameterization, these methods
are not generic and cannot be used for arbitrary systems, (ii) while this is true for
any empirical force field, conventional atomistic methods start with the assumption
of static bonds in their target system, therefore they cannot be used to model reactive
systems, and (iii) in most atomistic methods, charges are kept fixed throughout the
simulation. Although polarizable force fields were intruduced almost two decades ago
[1], they have only recently gained significant attention for modeling charge transfer
in empirical force fields [2]. Polarization is achieved either by inducible point dipole
methods, or by fluctuating charge models. Even though polarizable force fields are
built upon their non-polarizable counter-parts, their development still requires con-
siderable effort since charges are not assumed to be fixed in the target system. This
requires most parameters to be re-tuned. Better characterization of target systems
have been reported in literature through the use of polarizable force fields [3].

With apriori knowledge of the reactions in a system of interest and spatially local-
ized reactivity, we can use mixed quantum mechanics/molecular mechanics (QM/MM)
methods to study large scale reactive systems. Mixed QM/MM methods use QM
methods to simulate the reactive region while applying MM methods to the rest of
the system. The reactive region must be localized, otherwise computational cost of
QM methods dominates overall simulation cost. A natural question relates to effec-
tive and efficient ways of coupling QM and MM methods, which provides a bridge
between these disparate modeling regimes. If there are no covalent bonds between
the QM and MM regions, then coupling is easily achieved by introducing long range
interactions between the two regions. However, more complicated models are neces-
sary when there are covalent bonds. While impressive performace results have been
achieved using QM/MM methods on large scale reactive systems, factors such as
knowledge of reactive site apriori, size limitation on the reactive site, difficulties in
coupling QM/MM regions, and the intricacies of setting up/ running such simulations
have prevented mixed QM/MM methods from being widely applied to the study of
large scale reactive systems [11].

To bridge the gap between quantum methods and classical MD methods, a number
of models with empirical bond order potentials have been proposed. These techniques
mimic quantum overlap of electronic wave functions through a bond order term that
describes the bonds in the system dynamically based on the local neighborhoods
of each atom. These include Bond Energy Bond Order (BEBO) and VALBOND
methods. A widely used bond order potential has been the Reactive Empirical Bond
Order (REBO) potential [6]. REBO is built on the Tersoff potential [5], which was
inspired by Abell’s work [4]. REBO was extended to describe interactions with Si,
F and Pt. Subsequently, Brenner et al. developed a newer formulation of REBO
aimed at overcoming the shortcomings of the initial verison [7]. Like many other
bond order potentials, this new version of REBO lacks long range interactions, which
are important in modeling molecular systems. AIREBO was an attempt by Stuart et
al. to generalize REBO to include long range interactions. However, it retained the
fundamental problems in the shapes of the dissociation and reactive potential curves
of REBO [8].

The ReaxFF method of van Duin et al [9] is the first reactive force field that
contains dynamic bonds and polarization effects in its formulation. The flexibility and
transferability of the force field allows ReaxFF to be easily extended to many systems
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of interest in diverse domains. In terms of accuracy, in a detailed comparison of
ReaxFF against REBO and the semiempirical MOPAC-method with PM3 parameters
by van Duin et al [9], it has been reported that results from ReaxFF on hydrocarbons
are in much better agreement with DFT simulations than those of REBO and PM3.

Reactive force fields involve classical interactions that introduce limited non-
locality though the bond order terms. In spite of these simplifications, the chal-
lenges associated with implementing an efficient and scalable reactive force field are
formidable. In a classical MD simulation, bonds, valence angles, dihedral angles, and
atomic charges are input to the program at the beginning and remain unchanged
throughout the simulation. This allows for simple data structures and memory man-
agement schemes, in terms of static (interaction) lists. However, in a reactive force
field where bonds are formed or broken, and where all three-body and four-body struc-
tures need to be updated at every timestep, efficient memory management becomes
an important issue. When bonds incident on an atom are changing, it is evident that
charge on that atom is going to change as well. Charge update needs to be done accu-
rately because electrostatic interactions play crucial roles in describing most systems
and over/ under-estimation of charges would result in violation of energy conservation.

In this paper, we present algorithmic and numerical techniques underlying our
implementation of ReaxFF, called sPuReMD (serial Purdue Reactive Molecular Dy-
namics program). In Section 2 we describe the potentials used in our implementation.
Section 3 deals with the various algorithmic aspects of reactive modeling. In ReaxFF,
electrostatic interactions are modeled as shielded interactions with Taper corrections.
This obviates the need for computing long-range electrostatic interactions. Simple
pair-wise nature of non-bonded interactions allows the use of interpolation schemes
to expedite the computation of energy and forces due to non-bonded interactions. The
complexity of bonded interactions on one hand, and the possibility of expediting the
non-bonded interactions on the other hand bring the computational time required for
bonded interactions on par with that of non-bonded interactions (note that in classical
MD methods, time required for bonded interactions is negligible compared to the time
required for non-bonded interactions). As mentioned above, a highly accurate charge
equilibration method is desirable to obtain reliable results from ReaxFF simulations.
However, the QEq method [16] that we use for determining partial charges on atoms
at every time-step requires the solution of a very large sparse linear system, which can
take up a significant fraction of the total compute time. Consequently, we develop a
novel solver for the QEq problem using the a preconditioned GMRES method with an
ILU-based preconditioner. The solver relies heavily on optimizations across iterations
to achieve an excellent per timestep running time. The dynamic nature of bonds in
ReaxFF requires dynamic bond lists, and subsequently dynamic angle and dihedral
lists reconstructed at every timestep. In Section 4 we describe our memory man-
agement and reallocation mechanisms, which form critical components of sPuReMD.
We present detailed validation of performance and accuracy on hydrocarbon systems
by comparing simulation results with literature in Section 5. Characterization of
efficiency and performance of our implementation on systems of different types is pre-
sented in Section 6. Through these extensive simulations, we establish sPuReMD as
a high-performance, scalable (in terms of system sizes), accurate, and lean (in terms
of memory) software system. sPuReMD is currently in limited release and is being
used at ten large institutions for modeling diverse reactive systems.

2. Reactive Potentials for Atomistic Simulations. In classical molecular
dynamics, atoms constitute molecules through static bonds, akin to a balls and springs
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model in which springs are statically attached. This approach cannot simulate chem-
ical reactions, since reactions correspond to bond breaking and formation. In reactive
molecular dynamics using the Reax force field (ReaxFF), each atom is treated as a
separate entity, whose bond structure is updated at every time-step. This dynamic
bonding scheme, together with charge redistribution (equilibration to minimize elec-
trostatic energy) constitutes the core of ReaxFF.

2.1. Bond Orders. Bond order between a pair of atoms, i and j, is the strength
of the bond between the two atoms. In ReaxFF, bond order is modeled by a closed
form (Eq. (2.1)), which computes the bond order in terms of the types of atoms i and
j, and the distance between them:

BOα′

ij (rij) = exp

[
aα

(
rij

r0α

)bα
]

(2.1)

In Eq. (2.1), α corresponds to σ − σ, σ − π, or π − π bonds, aα and bα are
parameters specific to the bond type, and r0α is the optimal length for this bond
type. The total bond order (BO′

ij) is computed as the summation of σ − σ, σ − π,
and π − π bonds as follows:

BO′
ij = BOσ′

ij + BOπ′

ij + BOππ′

ij (2.2)

One cannot model the complex bond structure observed in real-life systems just
by using pair-wise bond order potentials; we must account for the total coordination
number of each atom and 1-3 bond corrections in valence angles. For instance, the
bond length and strength between O and H atoms in a hydroxyl group (OH) are
different than those in a water molecule (H2O). Alternately, taking the example of
H atoms in a water moleculue, detach the two H atoms from the middle O atom and
put them in vacuum while preserving the distance between them. Those two same H
atoms between which we do not observe any bonding in a water molecule would then
share a weak covalent bond. These examples suggest the necessity of aforementioned
corrections, which are applied in ReaxFF using Eq. (2.3).

BOij = BO′
ij · f1(∆′

i,∆
′
j) · f4(∆′

i, BO′
ij) · f5(∆′

j , BO′
ij) (2.3)

Here, ∆′
i is the deviation of atom i from its optimal coordination number, f1(∆′

i,∆
′
j)

enforces over-coordination correction, and f4(∆′
i, BO′

ij), together with f5(∆′
j , BO′

ij)
account for 1-3 bond order corrections. Only corrected bond orders are used in energy
and force computations in ReaxFF.

Once bond orders are calculated in this manner system-wide, the simulation pro-
cess resembles classical MD. Indeed, in ReaxFF the total energy of the system is
comprised of partial energy contributions (Eq. (2.4)), most of which are similar to
classical MD methods. However, due to the dynamic bonding scheme of ReaxFF,
these potentials must be modified to ensure smooth potential energy curves as bonds
form or break.

We briefly describe each type of interaction that constitutes the Reax force field
and provide energy expressions for them. Since the negative gradient of an interaction
energy yiends corresponding force, we omit formulae for forces. The total energy can
be written as sum of different energy terms as follows:
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Esystem = Ebond + Elp + Eover + Eunder

+ Eval + Epen + E3conj (2.4)
+ Etors + E4conj + EH−bond + EvdW + ECoulomb

2.2. Bond Energy. Classical MD methods adopt a spring model in which the
energy of a bond is determined solely by its deviation from the optimal bond distance,
therefore ignoring the effects of neighboring bonds. ReaxFF, however, takes a more
rigorous approach by computing the energy incident on a bond from all bond order
constituents. The higher the bond order, the lower the energy and the stronger the
force associated with the bond. The following equation (Eq. (2.5)) ensures that the
energy and force due to a bond smoothly go to zero as the bond breaks:

Ebond = −Dσ
e ·BOσ

ij · exp
{
pbe1

(
1−

(
BOσ

ij

)pbe2
)}

(2.5)
−Dπ

e ·BOπ
ij −Dππ

e ·BOππ
ij

2.3. Lone Pair Energy. This energy term accounts for unpaired electrons of
an atom, therefore classical MD terms do not explicitly compute this term. In a
nicely formed and equilibrated system, lone pair energy does not have a significant
contribution to the total energy, however, it is important for describing atoms with
defective bonds. Lone-pair energy is computed using the following equation:

Elp =
plp2 ·∆lp

i

1 + exp{−75 ·∆lp
i }

(2.6)

In this equation (Eq. (2.6)), ∆lp
i = nlp

opt−nlp
i essentially corresponds to the number

of unpaired electrons.

2.4. Over & Under-coordination Energy. Despite the valence correction
applied during bond order corrections, there may still remain some over or under-
coordinated atoms in the system. Over-coordination energy, as given by Eq. (2.7),
penalizes over-coordinated atoms.

If there is a π-bond between atoms i and j, then the energy due to the resonant
π-electron between these atomic centers is accounted by the Eq. (2.8) which is called
under-coordination energy.

Eover = ∆lpcorr
i ·

∑
j∈nbrs(i)

povun1 ·Dσ
e ·BOij(

∆lpcorr
i + V ali

) (
1 + exp{povun2 ·∆lpcorr

i }
) (2.7)

Eunder = −povun5 · f6(i, povun7, povun8) ·
1− exp{povun6 ·∆lpcorr

i }
1 + exp{−povun2 ·∆lpcorr

i }
(2.8)

∆lpcorr
i = ∆i −∆lp

i · f6(i, povun3, povun4)

f6(i, p1, p2) =

1 + p1 · exp

p2 ·

 ∑
j∈nbrs(i)

(
∆j −∆lp

j

)
·
(
BOπ

ij + BOππ
ij

)
−1
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2.5. Valence Angle Energy. The energy associated with vibration about the
optimum valence angle between atoms i, j, k is computed from Eq. (2.9):

Eval = f7(BOij , pval3, pval4) · f7(BOjk, pval3, pval4) · f8(∆j , pval5, pval6, pval7) ·(
pval1 − pval1 · exp

{
−pval2 · (Θ0 −Θijk)2

})
(2.9)

f7(BO, p1, p2) = 1− exp {−p1 ·BOp2}

f8(∆, p1, p2, p3) = p1 − (p1 − 1) · f9(∆, p2, p3)

f9(∆, p1, p2) =
2 + exp {p1 ·∆}

1 + exp {p1 ·∆}+ exp {−p2 ·∆}

Similar to its classical counterparts, the energy on Θijk increases as it moves away
from its corrected optima Θ0, which is obtained from the theoretical optima Θ00, by
accounting for the effects of over/under-coordination on the central atom j as well as
the influence of any lone electron pairs. Valence angle energy further depends on the
strength of bonds BOij and BOjk; f7(BOij) and f7(BOjk) terms in Eq. (2.9) ensure
that valence angle energy goes smoothly to zero as either bond dissociates.

2.6. Torsion Angle Energy. Eq. (2.10) accounts for the energy resulting from
torsions in a molecule.

Etors =
1
2
· f10(BOij , BOjk, BOkl, ptor2, 1) · sinΘijk · sinΘjkl · (2.10)

[V1 · (1 + cosωijkl) +

V2 · exp
{

ptor1 ·
(
2−BOπ

jk − f9(∆j + ∆k, ptor3, ptor4)
)2

}
· (1− 2cos(2ωijkl)) +

V3 · (1 + cos(3ωijkl)) ]

f10(BO1, BO2, BO3, p1, p2) = f7(BO1, p1, p2) · f7(BO2, p1, p2) · f7(BO3, p1, p2)

As in the valence angle energy term, the torsional conribution from a four-body
structure should vanish as any of its bonds dissociate. Here, f10(BOij , BOjk, BOkl, ptor2, 1)
enforce this constraint. If either of the two valence angles defined by these four atoms
approaches π, torsional energy should again disappear; this is accomplished by the
term sinΘijk · sinΘjkl.

In ReaxFF, there are other bonded interaction terms shown in Eq. (2.4) for which
we do not provide complete details. The stability of 3-body structures in which
the central atom has two double bonds is achieved by adding the penalty energy
term, Epen. Three-body conjugation energy, E3conj , and four-body conjugation energy,
E4conj , terms capture the energy contribution from conjugated systems. More details
regarding these terms can be found in [9, 10]. This paper focuses on the algorithmic
and numerical aspects of ReaxFF implementation.



8 H.M. AKTULGA AND S.A. PANDIT AND A.C.T. VAN DUIN AND A.Y. GRAMA

2.7. Hydrogen Bond Energy. The energy associated with a hydrogen bond
in ReaxFF is given by:

Ehbond = phb1 ·f7(BOXH , phb2, 1) ·sin4

(
ΘXHZ

2

)
·exp

{
−phb3 ·

(
r0
hb

rHZ
+

rHZ

r0
hb

− 2
)}

(2.11)
A hydrogen bond exists between an electronegative atom (denoted by Z in Eq. (2.11))

in the vicinity of a Hydrogen atom, covalently bonded to a Nitrogen, Oxygen or Fluo-
rine atom (denoted by X). Similar to model for valence angle and torsion angle poten-
tials, the f7(BOXH , phb2, 1) term ensures that contributions from hydrogen bonding
smoothly disappear as the covalent bond breaks. For hydrogen bonding to be strong,
it is crucial that all three atoms are aligned on a straight line. This is modeled by the
term sin4(ΘXHZ

2 ), which is maximized when ΘXHZ = π.

2.8. van der Waal’s Interaction. A distance-corrected Morse-potential is used
for van der Waals interactions, as shown in Eq. (2.12).

EvdWaals = Tap(rij) ·Dij · (2.12)[
exp

{
αij ·

(
1− f13(rij)

rvdW

)}
− 2 · exp

{
1
2
· αij ·

(
1− f13(rij)

rvdW

)}]
Tap(rij) = Tap7 · r7

ij + Tap6 · r6
ij + Tap5 · r5

ij + Tap4 · r4
ij (2.13)

+ Tap3 · r3
ij + Tap2 · r2

ij + Tap1 · rij + Tap0

f13(rij) =
(
rpvdW1
ij + γ−pvdW1

w

) 1
pvdW1 (2.14)

Contrary to classical force fields where van der Waals interactions are computed
only between non-bonded atom pairs, in ReaxFF all atom pairs, bonded or non-
bonded, contribute to van der Waals energy. The reason for this is that exclusion of
bonded pairs from van der Waals energy computation would result in discontinuties
on the potential energy surface as bonds are formed or broken. To prevent extremely
high repulsion forces between pairs at short distances, a shielding term is included, see
Eq. (2.14). The Taper function in Eq. (2.13) ensures that the van der Waals energy
smoothly goes to zero for pairs at distances beyond the non-bonded interaction cut-off
distance, rnonb.

2.9. Coulomb Interaction. Like van der Waals interactions, Coulomb inter-
actions need to be computed between all atom pairs; shielding and Taper terms are
included in the Coulomb potential as well (Eq. (2.15)).

ECoulomb = C · Tap(rij) ·
qi · qj[

r3
ij + γ−3

ij

] 1
3

(2.15)

All Coulomb interactions are confined within the rnonb cut-off. There are no
long-range electrostatic interactions in ReaxFF.

2.10. Charge Equilibration. Since bonding is dynamic in ReaxFF, charges
on atoms cannot be fixed for the duration of simulations, as in most classical MD
methods. Charge must be redistributed periodically (potentially at each time-step).
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The most accurate way of doing this would be to employ ab-inito methods. However,
this would render the ReaxFF method unscalable, therefore conflicting with our ini-
tial goal of building a highly scalable reactive force field. We resort to an alternate
approximation to the charge equilibration problem called QEq [16].

The charge equilibration problem can be approximated as follows: find an assign-
ment of charges to atoms that minimizes the electrostatic energy of the system, while
keeping the system’s net charge constant. The total electrostatic energy is given as:

E(q1 . . . qN ) =
∑

i

Atomic Energy of i due to qi (2.16)

+
∑
i<j

Coulomb energy between i and j

where i and j denote atom indices and qi denotes the partial charge on atom i. The
coulomb interaction between atom pairs is relatively straighforward:

∑
i<j Jijqiqj .

The first summation in Eq. (2.16) requires more explanation, though. Charge depen-
dency of an isolated atom’s energy can be written as:

Ei(q) = Ei0 + qi

(
∂E

∂q

)
i0

+
1
2
q2
i

(
∂2E

∂q2

)
i0

+ . . . (2.17)

Here, Ei(0) corresponds to the energy of an isolated neutral atom. If we detach
one electron from a neutral atom, we end up with an ion of +1 charge, and the en-
ergy required to do so is called the ionization potential (IP). There is a related term,
electron affinity (EA), which corresponds to the energy released when we attach one
electron to a neutral atom creating, a negative ion. IP and EA are well known quan-
tities that can be measured for any element through physical experiments. Including
only terms through second order in Eq. (2.17), we can write:

Ei(0) = Ei0 (2.18)

Ei(+1) = Ei0 +
(

∂E

∂q

)
i0

+
1
2

(
∂2E

∂q2

)
i0

= Ei0 + IP (2.19)

Ei(−1) = Ei0 −
(

∂E

∂q

)
i0

+
1
2

(
∂2E

∂q2

)
i0

= Ei0 − EA (2.20)

Solving for the unknowns in Eq. (2.19) and Eq. 2.20 gives:

(
∂E

∂q

)
i0

=
1
2
(IP + EA) = χ0

i (2.21)(
∂2E

∂q2

)
i0

= IP − EA = J0
ii (2.22)

Here, χ0
i is referred to as the electronegativity and J0

ii as the idempotential or
self-Coulomb of i. We will revisit the computational solution of this QEq problem
when we discuss algorithmic aspects of our implementation in Section 3. For now, we
just restate the problem more formally in the light of the discussions above:
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Minimize E(q1 . . . qN ) =
∑

i

(Ei0 + χ0
i qi +

1
2
J0

iiq
2
i ) +

∑
i<j

(Jijqiqj)

(2.23)

subject to qnet =
N∑

i=1

qi

3. Algorithmic Aspects of Reactive Modeling. Since ReaxFF is a classical
MD method at its core (albeit with some important modifications), the high-level
structure of our ReaxFF implementation reflects that of a classical MD code, as shown
in algorithm 1. The key components of the algorithm include: generate neighbors,
compute energy and forces, move atoms under the effect of net forces, and repeat
until the desired number of steps are reached. Each of these components, however,
is considerably more complex in ReaxFF because of dynamic bonding and charge
equilibration. It is this complexity that forms the focus of our study.

Algorithm 1 General structure of an atomistic modeling code.
Read geometry, force field parameters, user control file
Initialize data structures
for t = 0 to nsteps do

Generate neighbors
Compute energy and forces
Evolve the system
Output system info

end for

In this section, we discuss the algorithmic techniques and optimizations in sPuReMD
that deliver excellent per-timestep simulation time and linear time scaling in system
size. We also present a detailed performance analysis of the techniques and opti-
mizations on a sample bulk water system. We choose a water system as our sample
system for two reasons – first, water is ubiquitous in diverse applications of molecular
simulation; and second, the ReaxFF model for water involves almost all types of in-
teractions present in the Reax force field – thus validating accuracy and performance
of all aspects of our implementation. The bulk water system we use contains 6540
atoms (2180 water molecules) inside a 40.3 × 40.3 × 40.3Å3 simulation box yielding
the ideal density of 1.0 g/cm3.

3.1. Neighbor Generation. In ReaxFF, both bonded and non-bonded inter-
actions are truncated after a cut-off distance (which is typically 4-5 Åfor bonded
interactions and 10-12 Åfor non-bonded interactions). Given this truncated nature of
interactions, we use a procedure based on “binning” (or link-cell method) [14]. First, a
3D grid structure is built by dividing the domain of simulation into small cells. Atoms
are then binned into these cells based on their spatial coordinates. It is easy to see
that potential neighbors of an atom are either in the same cell or in neighboring cells
that are within the neighbor cut-off distance rnbrs of its own cell. Using this binning
method, we can realize O(k) neighbor generation complexity for each atom, where k
is the average number of neighbors of any atom. The associated constant with this
asymptote can be high, depending on the actual method and choice of cell size. In
most real-life systems, k is a constant (bounded density), resulting in an overall O(N)
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computational complexity for neighbor generation. Even though neighbor lists can
be generated in linear-time, this part is one of the most computationally expensive
components of an MD simulation. Therefore it is desirable to lower the large constant
associated with the O(1) computational complexity of generating the neighbors of a
single atom.

Cell dimensions. The dimensions of cells play a critical role in reducing the
neighbor search time. Choosing either dimension of a cell to be greater than the cut-
off distance is undesirable, since this increases the search space per atom. Choosing the
dimensions of cells to be roughly equal to rnbrs is a reasonable choice, creating a search
space of about (3rnbrs)

3 per atom. Setting the cell dimensions to be 1
2rnbrs, further

decreases the search space to ( 5
2rnbrs)3, which is clearly a better choice. Continuing

to reduce the cell dimensions further would further reduce the search space (the shape
of the search space approaching a perfect sphere in the lower limit), but there is an
overhead associated with managing the increased number of cells. An empirical study
using our ReaxFF implementation on the bulk water system described above reveals
that the lowest neighbor list generation time is achieved when the cell size is half of
rnbrs (Tab. 3.1).

Table 3.1
Comparison of different rnbrs to cell size ratios in terms of the time and memory required

to generate neighbors in our code. For benchmarking, we have performed an NVT (constant N ,
volume, and temperature) simulation of a bulk water system at 300 K. Values below are the average
neighbor generation times per step measured in seconds averaged over 100 steps. Memory usage
reported is the space required by the 3D grid structure only.

rnbrs/cell size time (s) memory (MB)
1 0.15 2
2 0.11 4
3 0.13 23
4 0.18 106
5 0.27 370

Atom to cell distance. Another optimization in neighbor search is to first look at
the distance of an atom to the closest point of a cell before starting the search for
neighboring atoms inside that cell. If the closest point of a cell to an atom is further
than rnbrs, it is evident that none the atoms in the cell are potential neighbors. For
the experiment described in Tab. 3.1, when rnbrs to cell size ratio is set to 2, neighbor
generation takes 0.14 seconds on average without this optimization (as opposed to
0.11 seconds with it) reflecting an improvement over 20%.

Regrouping. Regrouping atoms that fall into the same cell together in the atom
list improves neighbor search performance, since it makes better use of the cache.
When we look up the position information of an atom, the position information of
other atoms adjacent to it in the list would be brought to the cache as well. If these
adjacent atoms happen to be the ones inside the same cell, then it is likely that we
will find the position information of the next atom in neighbor search in the cache.
Regrouping also improves the performance of force computation routines for exactly
the same reason.

Verlet lists. Delayed neighbor generation using Verlet lists is another common
optimization. The idea of Verlet lists is based on the observation that in a typical
simulation, atoms do not have large displacements between successive integration
steps. Consequently, by choosing a suitable buffer region rbuf and an appropriate
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reneighboring frequency frenbr, neighbor list generation from scratch can be delayed
to every frenbr steps. In this approach, at each step, every atom only needs to update
its distance only to the atoms in its Verlet list and to determine its neighbors from
this list. We note that neighbor generations are more expensive, due to the increased
search space and there is still the cost of updating distances between atom pairs in
the Verlet lists at each step. Furthermore, the Verlet list is larger than the actual
neighbors list requiring more memory lookups. This situation may incur additional
overhead due to iterations over a larger list for force computations as well. In our
ReaxFF implementation, we observe that gains from delayed reneighboring strategy
are only marginal, most likely because of the effectiveness of other optimizations in
the code.

Algorithm 2 Neighbor lists
rnbrs ← rnonb + rbuf

grid ← Setup Grid( simulation box, atom list )
Bin Atoms( grid, atom list )
num nbrs ← Estimate Neighbors( grid, atom list )
nbr list gets Allocate Neighbor List( n, num nbrs )
if tmodfrenbr == 0 then

for all cell1 in grid do
for all atomi in cell1 do

for all cell2 in cell1nbrs do
dcell2 ← distance of atomi to closest point of cell2
if dcell2 <= rnbrs then

for all atomj in cell2 do
dij ← |xi − xj |
if dij <= rnbrs then

nbr listi ← j
end if

end for
end if

end for
end for

end for
else

for all i, j in nbr list do
dij ← |xi − xj |

end for
end if

Our neighbor list generation routine is given in Alg. 2 with all of the optimizations.
The neighbor list is the most memory consuming data-structure. Therefore, we store it
as a half-list, to reduce the overall memory footprint. The neighbor list size is dynam-
ically controlled to optimize the memory usage according to the constantly changing
geometry of the simulated system. Our dynamic memory management scheme is
desribed in detail in Section 4.

3.2. Bonded and Non-bonded Force Computations. The dynamic bond-
ing and charge equilibration in reactive models add to the complexity of force com-
putation, both algorithmically and performance-wise. In Alg. 3, we outline the key
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components of force computations in ReaxFF. In the following subsections, we dis-
cuss algorithms and techniques used to achieve excellent performance for for force
computations in ReaxFF.

Algorithm 3 Computation of energy and forces in a reactive force field.
Compute bonds
Compute bonded forces
Update charges
Compute non-bonded forces

3.2.1. Eliminating bond order derivative lists. As described in Section 2,
all bonded potentials (including even the hydrogen bond potential) primarily depend
on the strength of the bonds between the atoms it involves. Therefore all forces arising
from bonded interactions will depend on the derivative of the bond order terms.

A close examination of Eq. (2.3) suggests that BOij depends on all the uncor-
rected bond orders of both atoms i and j, which could be as many as 20-25 in a
typical system. This also means that when we compute the force due to the i − j
bond, the expression dBOij/drk evaluates to a non-zero value for all atoms k that
share a bond with either i or j. Considering the fact that a single bond takes part
in various bonded interactions, we may need to evaluate the expression dBOij/drk

several times over a single time-step. One approach to efficiently computing forces
due to bond order derivatives is to evaluate the bond order derivative expressions at
the start of a timestep and then use them repeatedly as necessary. Besides the large
amount of memory required to store the bond order derivative list, this approach also
has implications for costly memory lookups during the time-critical force computation
routines.

We eliminate the need for storing the bond order derivatives and frequent look-
ups going to physical memory by delaying the computation of the derivative of bond
orders until the end of a timestep. During the computation of bonded potentials,
we accumulate the coefficients for the corresponding bond order derivative terms
arising from various interactions into a scalar variable CdBOij . In the final stage of
a timestep, we evaluate the expression dBOij/drk and add the force CdBOij × dBOij

drk

to the net force on atom k directly.

(c1×
dBOij

drk
+c2×

dBOij

drk
+. . . cn×

dBOij

drk
) = (c1+c2+cn)×dBOij

drk
= CdBOij×

dBOij

drk

This simple technique enables us to work with much larger systems on a single
processor by saving us considerable memory. It also saves considerable computational
time during force computations.

3.2.2. Lookup tables for non-bonded interactions. In general, computing
non-bonded forces is more expensive than computing bonded forces, due to the larger
number of interactions within the longer cut-off radii associated with non-bonded in-
teractions. In ReaxFF, the formulations of non-bonded interactions are more complex
compared to their classical counterparts. These two factors increase the fraction of
time required to compute non-bonded energy and forces in ReaxFF simulations.

Using a lookup table and approximating complex expressions by means of inter-
polation is a common optimization technique for MD simulations [22]. In sPuReMD,
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we use a cubic spline interpolation to achieve accurate approximations of non-bonded
energies and forces, while using a compact lookup table. Performance gains and
additional memory required by this technique are summarized in Tab. 3.2.2. It is
evident that approximating non-bonded forces with interpolation gives significant
performance improvements, as much as eight times, when we look at only the time
to compute non-bonded interactions or upto a factor of three in the overall running
time.

Table 3.2
Sample bulk water system. Effect of approximating non-bonded energy and forces through cubic

spline interpolations. Size of the lookup table (in MB) is also shown. Last column gives the RMS
deviation of net forces due to interpolation.

# of splines total (s) init (s) nonb (s) table size (MB) rms(fnet)
1000 0.53 0.15 0.09 1.2 2.2× 10−8

10000 0.56 0.16 0.11 12 2.1× 10−12

50000 0.62 0.18 0.15 61 6.9× 10−15

none 1.80 0.31 1.20 0 0

The memory size of the interpolation table is directly proportional to the number
of splines used and the number of different element pairs in the system to be simu-
lated. This is clearly reflected in the memory requirements of RuReMD, working on
the same system with different number of splines used for interpolation. Tab. 3.2.2
shows that as we increase the number of splines from 1000 to 50, 000, the size of the
lookup table increases from 1.2 MB to 61 MB. Not surprisingly, besides the memory
overhead, increasing the number of splines adversely affects the performance of force
computations as well. Due to the nature of our neighbor generation routine, neighbors
of an atom are roughly clustered by their distances to that atom (since we handle the
search space cell by cell). A small lookup table allows sPuReMD to make good use of
the cache, however, increasing the number of splines adversely impacts cache usage
and overall performance.

An important implementation choice corresponds to the size of the lookup table.
To address this, we compute the root-mean-squared (RMS) deviation of net forces
from their actual values in Tab. 3.2.2. Even when we use only 1000 splines, the RMS
deviation of net forces is on the order of 10−8. This is well within required tolerance
for MD simulations [15].

3.3. A Fast ILU preconditioning-based solver for the charge equilibra-
tion problem. One of the most compute-intensive parts of a ReaxFF simulation is
the procedure for (re)assining partial charges to atoms at each timestep. This compo-
nent does not exist in conventional MD formulations, since they rely on static charges
on atoms. The charge reassignment problem is formulated as charge equilibration,
with the objective of minimizing electrostatic energy.

In this section, we first briefly desribe the mathematical formulation of the charge
equilibration problem. We use various aspects of the formulation to motivate our
choice of a Krylov subspace solver with an ILU preconditioner. We investigate various
performance and stability aspects of our solver, and validate its accuracy on model
systems. We use two physical systems in addition to the bulk water system described
before: a biological system composed of a lipid bilayer (biomembrane) surrounded by
water molecules (56,800 atoms in total) in an orthogonal 82.7×81.5×80.0 Å3 box, and
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a PETN crystal with 48,256 atoms again inside an orthogonal box with dimensions
570× 38× 28 Å3.

3.3.1. Mathematical formulation. We extend the mathematical formulation
of the charge equilibration problem by Nakano et al. [17]. Using the method of
Lagrange multipliers to solve the electrostatic energy minimization problem, we obtain
the following linear systems:

−χk =
∑

i

Hiksi (3.1)

−1 =
∑

i

Hikti (3.2)

Here, H denotes the QEq coefficient matrix which is an N by N sparse matrix, N being
the number of atoms in the simulation. The diagonal elements of H correspond to
the polarization energies of atoms, and off-diagonal elements contain the electrostatic
interaction coefficients between atom pairs. χ is a vector of parameters determined
based on the types of atoms in the system and it has a size of N . s and t are fictitious
charge vectors of size N which come up while solving the minimization problem.
Finally, partial charges, qi’s, are derived from the fictituous charges based on the
following formula:

qi = si −

∑
i

si∑
i

ti
ti (3.3)

The linear systems in Eq. (3.1) and Eq. (3.2) can be solved using a direct solver.
However, for moderate to large sized systems, direct solvers are observed to be much
more expensive than Krylov subspace methods.

3.3.2. Basic solution approaches. H is a sparse linear system and we can use
well-known Krylov subspace methods such as CG [18] and GMRES [19] to solve the
linear systems in Eq. (3.1) and Eq. (3.2). The sparsity of the coefficient matrix results
from the fact that independent of system size, we use neighboring atom information
only within the non-bonded interaction cut-off distance rnonb. Even though rnonb,
and the number of atoms that can be found within the cut-off radius change from
system to system, this number is bounded (typically on the order of a few hundred
atoms). Therefore the number of non-zeros in H will be on the order of a few hundred
entries per row independent of the system size.

Based on our observations on different molecular systems, H carries a heavy
diagonal and this motivates diagonal scaling as an effective accelerator for the solver.
Individual timesteps in reactive MD simulations are also much shorter than those in
conventional MD (less than a femtosecond in ReaxFF ). Therefore the system does
not change drastically between consecutive timesteps. This observation implies that
solutions to Eq. (3.1) and Eq. (3.2) in one timestep yield good initial guesses about
the solutions the next timestep. Indeed, by making linear, quadratic or higher order
extrapolations on the solutions from previous steps, better initial guesses can be
obtained for the charge equilibration problem at the current timestep.
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One may derive a simple solver based on the observations above: A GMRES or
CG solver with a diagonal preconditioner, which extrapolates from the solutions of
previous timesteps to make a good initial guess. Tab. 3.3 summarizes the perfor-
mance of these solvers on our sample systems. The stopping criteria (tolerance) for
both solvers is determined by the norm of the relative residual (10−6 is generally a
satisfactory value). In Tab. 3.3, we set the QEq tolerance to 10−6 and use linear
extrapolation for both systems.

Table 3.3
Performance of basic approaches for bulk water and bilayer systems. QEq tolerance is set to

10−6, which suffices for most applications. Extrapolation scheme is linear extrapolation.

system solver matvecs QEq (s) QEq (%)
bulk water CG+diagonal 31 0.18 23%

(6540 atoms) GMRES(50)+diagonal 18 0.11 15%
bilayer system CG+diagonal 38 9.44 64%
(56800 atoms) GMRES(50)+diagonal 19 4.82 47%

In Tab. 3.4, we use a much lower tolerance level (10−10) to observe the perfor-
mance of these basic solvers, when a high accuracy solution is desired. Results in
Tab. 3.3 and 3.4 suggest that GMRES is a better solver for the QEq problem com-
pared to CG. However, QEq still takes up to 47% of total computation time, even
with the GMRES solver at a modest 10−6 tolerance level. This motivates the use of
more powerful solvers/ preconditioners. We address this issue in the remainder of this
section.

Table 3.4
Performance of basic solvers for bulk water and bilayer systems. QEq tolerance is set to 10−10

to observe performance at low tolerance.

system solver matvecs QEq (s) QEq (%)
bulk water CG+diagonal 95 0.54 47%

(6540 atoms) GMRES(50)+diagonal 81 0.49 44%
bilayer system CG+diagonal 159 39.6 88%
(56800 atoms) GMRES(50)+diagonal 138 34.7 86%

3.3.3. ILU-based preconditioning. Preconditioning techniques based on in-
complete LU factorization (ILU) are effective and widely used for solving sparse linear
systems [20]. ILU-based preconditioners help in reducing the iteration counts reported
in Tab. 3.3 and 3.4 dramatically. However, the QEq problem needs to be solved at
each step of a ReaxFF simulation and computing the ILU factors and applying them
as preconditioners, frequently, is computationally expensive. However, the observa-
tion regarding the use of the solutions from previous timesteps as initial guesses has
further implications. The fact that the simulation environment evolves slowly in a
ReaxFF simulation implies that the QEq coefficient matrix H and its ILU factors
L and U evolve slowly as well. Therefore, the same factors L and U can be used
effectively as preconditioners over several steps.

ILU factorization. In sPuReMD, we use factors from the ILU factorization
of the H matrix with zero fill-in and a threshold. Zero fill-in means that we drop
values in the L and U matrices that correspond to zero-entries in the H matrix. The
threshold used in the ILU factorization ensures that all entries in the L and U factors
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with values less than a specified threshold are dropped. In ILU factorization with a
threshold (ILUT), the smaller the threshold, the better the preconditioners. However,
factorization takes considerably longer.

Tests on our sample bulk water system reveal that the QEq solver’s performance
is not very sensitive to the threshold for ILU factorization; different thresholds cho-
sen from a large range (0.03, 0.01, 0.005 and 0.001) exhibit comparable performance.
When the threshold value is on the high side, factorization is relatively cheap but
the preconditioners are not as effective and iteration counts increase slightly. As the
threshold value is decreased, ILU factorization and applying the resulting factors as
preconditioners become more expensive, however, we observe improvements in iter-
ation counts compensating for the more expensive factorization and preconditioning
steps. Based on this empirical evidence, we fix the ILUT threshold at 0.01 for the
experiments presented in this section.

Longevity of the ILU-based preconditioners. Experiments on the longevity
of ILU-based preconditioners suggests that depending on the displacement rate of
atoms in the system (which is determined mostly by the type of the material and
simulation temperature, among other factors) and the desired accuracy of the solution,
the same preconditioner can be used over tens to thousands of time-steps with only
a slight increase in the iteration count.

In Fig. 3.1, we show how the characteristics of the system affect the longevity of
ILU-based preconditioners. In addition to our sample bulk water system, a liquid,
we perform simulations on a large PETN crystal which is a large solid crystal with
48256 atoms, QEq tolerance is set to 10−6 in all cases. We compute the ILU-based
preconditioner at the start of each simulation and use the same preconditioner over
the lifetime of the simulation. As can be seen, for the PETN system, we can use the
same preconditioner over a few picoseconds (several thousands of steps) without a
significant increase in the number of iterations (and time) required by the PGMRES
or PCG solvers. On the other hand, atoms in bulk water tend to have a higher
displacement rate. Therefore ILU-based preconditioners lose their effectiveness much
quicker. Even in this case, the number of steps that ILU-based preconditioners proves
to be effective is on the order of a few hundred steps – long enough to amortize the
ILU factorization cost.

We also examine how the desired accuracy of the solution affects the longevity of
ILU-based preconditioners. In Fig. 3.2, we show the immediate effects of decreasing
the QEq tolerance on the bulk water system: increased number of iterations, quickly
deteriorating preconditioners (note the much shorter simulation time of 0.05 ps). On
the other hand, for the PETN crystal we observe that the ILU preconditioners are
still quite effective for long durations (0.5 ps). However, even for the PETN crystal
simulated at the QEq tolerance of 10−10, there is a quicker increase in the number of
iterations of the QEq solver compared to the simulations at 10−6 tolerance level.

One last observation can be made regarding the linear solvers we use, PGMRES
vs. PCG. Besides delivering a better performance than PCG, PGMRES holds the
edge in the longevity of ILU-preconditioners as well. For these reasons, PGMRES is
supported as the default solver in sPuReMD.

Performance gain with ILU-based preconditioners. Even when the longevity
of ILU-based preconditioners is on the order of tens of steps (which actually is the
case for the bulk water system with QEq threshold at 10−10), this is long enough to
amortize the cost of the ILU factorization step. The significant improvement in the
number of iterations and computation times result in impressive overall performance.
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Fig. 3.1. Longevity of the ILU-based preconditioners for systems with different characteristics.
At the top a bulk water simulation is shown and at the bottom a PETN crystal simulation.

In Tab. 3.5, we show the performance of QEq solvers with ILU-based precondi-
tioners for the bulk water system at 10−6 and 10−10 tolerance levels. Compared to the
corresponding values in Tab. 3.3 and 3.4, QEq solvers with ILU-based preconditioners
deliver three to four times better performance than the basic solvers. Even when we
consider the case of 10−10 tolerance level, the overall fraction of QEq computations in
total computation time is only 15%-18%. This implies that the (re)assignment of par-
tial charges at high accuracies can be accomplished without a significant degradation
in the overall performance.

In Tab. 3.6, we present the performance of QEq solvers with ILU-based precondi-
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Fig. 3.2. Longevity of the ILU-based preconditioners at very low QEq tolerances. At the top a
bulk water simulation is shown and at the bottom a PETN crystal simulation.

tioners for the lipid bilayer system at 10−6 and 10−10 tolerance levels. Although the
number of iterations required by QEq solvers at 10−6 tolerance level are the same as
those in the bulk water system, the share of QEq in total computational time is much
higher for the bilayer simulation (23-31% vs. 6-9%). This is due to less effective use
of cache during the matrix-vector multiplication in each iteration. As the tolerance is
decreased to 10−10, the share of QEq increases even further to 53-57%, because of the
increase in the number of matrix-vector products. Optimizations for improved cache
performance are currently being implemented in sPuReMD to improve this fraction.
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Table 3.5
Performance of ILU-based preconditioners for the bulk water system averaged over 1000 steps.

Refactorization frequency is 100 and 30 for the 10−6 and 10−10 QEq tolerances, respectively.

qeq tol solver matvecs QEq (s) QEq (%)

tol=10−6 CG+ILUT(10−2) 9 0.06 9%
GMRES(50)+ILUT(10−2) 6 0.04 6%

tol=10−10 CG+ILUT(10−2) 18 0.13 18%
GMRES(50)+ILUT(10−2) 15 0.11 15%

Table 3.6
Performance of ILU-based preconditioners for the bilayer system averaged over 100 steps.

Refactorization frequency was 100 and 50 for the 10−6 and 10−10 QEq tolerance levels, respectively.

qeq tol solver matvecs QEq (s) QEq (%)

tol=10−6 CG+ILUT(10−2) 9 2.39 31%
GMRES(50)+ILUT(10−2) 6 1.58 23%

tol=10−10 CG+ILUT(10−2) 27 6.93 57%
GMRES(50)+ILUT(10−2) 23 5.96 53%

4. Memory Management. There are two important aspects of designing a
flexible and efficient memory manager for atomistic simulations. First is the choice of
appropriate data structures for representing various lists required during force com-
putations in a way that provides efficient access to these lists while minimizing the
memory footprint. For most classical MD simulations, memory footprint is not a ma-
jor concern because the neighbor list is the only data structure that requires significant
space. However, in a reactive force field the dynamic nature of bonds, three-body,
and four-body interactions, together with significant amount of book-keeping required
for these interactions necessitate larger memory requirement and more sophisticated
procedures for managing memory. The second important aspect is the adaptation of
data-structures to constantly changing simulation environment. Since the interaction
patterns in a reactive environment cannot be predicted at the start of a simulation,
we cannot precisely estimate the amount of memory required by all lists throughout
the simulation. A reallocation mechanism in sPuReMD constantly adapts its data-
structures based on the needs of the system being simulated. In this section, we first
describe various data-structures used in sPuReMD and then discuss the reallocation
mechanisms for each of them.

4.1. Dynamic data-structures. A number of dynamic data structures are
used in sPuReMD to ensure high access rate and low footprint.

4.1.1. Neighbors list. The neighbor list in sPuReMD is similar to its coun-
terpart in conventional MD implementations. We represent the adjacency matrix in
CSR (compressed sparse row) format and keep only the upper half of the adjacency
matrix to reduce its memory requirement by half. Keeping only the upper half of
the adjacency matrix does not degrade the performance of sPuReMD, due to our
optimized access technique. In fact, its compactness improves overall performance by
reducing the memory region over which accesses are iterated.

Neighbor list is used in the computation of non-bonded interactions as well as the
construction of all other lists described below. A neighbor list storage unit contains
the atom list index of the neighbor, the distance and the distance vector between
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the pair, and the imaginary box information for keeping track of neighbors through
periodic boundaries.

4.1.2. QEq matrix. We represent the QEq matrix as a list separate from the
neighbor list for two reasons. First, as discussed in Section 3.1, with the use of delayed
re-neighboring the cut-off for the neighbors list, rnbrs, can be larger than the cut-off
for the QEq matrix, rnonb. Keeping a separate list ensures efficient usage of memory.
More importantly, matrix-vector products during QEq require several passes over the
coefficient matrix. Keeping a separate list for the QEq matrix, where each unit is
compactly packed with the column information and the matrix entry only, requires
access to a much smaller memory region. This ensures better usage of the cache due
to spatial locality.

We only store the upper half of the QEq matrix, also in CSR format. At the start
of each timestep, the QEq matrix, together with the bonds and hydrogen bonds lists
are constructed in a single pass over the neighbor list.

4.1.3. Bonds lists. In ReaxFF, bonds need to be identified and their strengths
need to be calculated at each step. We use the neighbor list described above to iden-
tify potential bonds. However, as discussed in Section 2.1 calculating the actual bond
order between two atoms is not a pair-wise interaction, it requires full knowledge of
all other potential bonds of these two atoms. Furthermore, higher order interactions
such three-body, four-body, and multi-body terms also change every timestep. Con-
structing these interactions and computing forces due to them require full knowledge
of bonds incident on all interacting atoms. For these reasons, we maintain the bond
list as a full list in a modified CSR format. Even though a bond order storage unit is
a large structure with all the quantities required for force computations, our use of a
full list is motivated by the need to improve the performance of force computations
for these interactions.

We call the format of our bond list, modified CSR format, because the space
reserved for each atom in the list is contigiuous, but the actual data stored is not.
This is required because the neighbors list is a half list and we need to be able to access
the memory reserved for the bonds of both i and j while processing their neighbors
information. sPuReMD starts by estimating the number of bonds of each atom based
on the neighbor list at the start of the simulation. The estimation task is carried out
before any force computations are performed. Let ebi denote the number of estimated
bonds for atom i. Then max(2ebi,MIN BONDS) slots are reserved for atom i in the
bond list. This conservative allocation scheme prevents any overwrites in subsequent
steps and reduces the frequency of bond list reallocations (this is discussed in more
detail in Section 4.2) throughout the simulation.

4.1.4. Hydrogen bonds list. In sPuReMD, due to performance and space
considerations, we maintain the neighbor list as a half list, as mentioned before. This
means that neighbors of a hydrogen atom within the hydrogen bonding cut-off rhbond

are spread all over the neighbor list. To make hydrogen bonding computations easier,
we maintain a separate list in which we collect hydrogen bonding pairs together, using
the same modified CSR format as the bonds list.

In hydrogen bonds list, for each hydrogen atom, we only store its neighbors be-
longing to certain chemical species that can establish hydrogen bonds and fall within
the rhbond cut-off. To save memory, instead of replicating the distance, distance vec-
tor, and imaginary box information already stored in the neighbors list, in a hydrogen
bonds list unit we store a pointer to the corresponding neighbors list storage unit and
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a flag that describes the neighbors list entry as an H-X or X-H pair (where X denotes
the acceptor in a hydrgon bond).

4.1.5. Three-body interactions list. Three-body interactions in sPuReMD
are constructed from the bonds list. For each atom j, we iterate over its bond list
(which is a full list) to locate all pairs i and k such that the angle term i, j, k sat-
isfies certain criteria to be included in three-body force computations. We store the
information about all such three-body structures for use while building the four-body
structures. We store the three-body structures in CSR format indexed not by the
atoms but by the bonds in the system.

4.1.6. Four-body interactions. Four-body structures are constructed in a
manner similar to three-body structures. We bring together two three-body structures
i, j, k and j, k, l to see whether they satisfy certain criteria for a four-body interaction.
Four-body structures are not stored, since there are no higher order interactions in
ReaxFF. Energy and forces due to the discovered four-body interactions are computed
on the fly.

4.2. Reallocation Mechanism. In sPuReMD, the reallocation mechanism en-
sures that we retain a small memory footprint and adapt our data-structures to the
changing simulation needs. The general mechanism consists of three parts: estima-
tion, monitoring, and reallocation. At the start of simulation, sPuReMD runs a num-
ber of estimation routines before storing data. Actual neighbor generation and force
computations are executed after all the lists are initialized based on their estimated
sizes. Throughout the simulation, memory utilization in each list is monitored. When
utilization within a list reaches above a high threshold or below a low threshold, the
list is reallocated. To avoid overheads associated with reallocations (such as copying
stored data), we ensure that the reallocation deamon kicks in when none of the lists
contain important data, thus reducing the cost of a list reallocation to a deallocate/
allocate call.

5. Validation. We validate our algorithms and implementation comprehensively
on a well-studied class of materials, hydrocarbons. Hydrocarbons are mostly used as
combustable fuel sources and comprise one of the most important sources of energy.
Our choice of this system is motivated by several factors: (i) they are relatively well
studied, therefore considerable experimental data is available for validation, (ii) the
diversity of interactions in hydrocarbons stress all parts of the code, and underly-
ing algorithms, (iii) due to reactive aspects of typical applications, conventional MD
methods are not feasible, and (iv) systems of various sizes can be prepared relatively
easily. We choose to work with a hexane, C6H14 system in liquid form for validation.

5.1. Preparation of systems. Initial configurations are prepared by randomly
placing the desired number of hexane backbone chains inside a large box to minimize
overlaps among hexane molecules. Initial configurations are first energy minimized
and then run under the NPT ensemble using GROMACS [22] to quickly bring them
to equilibrium under 1 atm pressure and 200 K temperature. Systems of various sizes
(343, 512, 1000, 1728, 3375 molecules) are prepared in this manner for the scalability
analysis. Results presented in this section are derived from the hexane343 system –
343 hexane molecules (6860 atoms) inside an orthogonal box with periodic boundary
conditions.

5.2. ReaxFF simulations. Configurations equilibrated using GROMACS are
used for our ReaxFF simulations. The force field for hexane simulations in GRO-
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MACS does not treat H atoms separately, they are modeled as parts of super-atomic
structures in the force field. This has two advantages for GROMACS simulations.
First, the number of atoms in the simulation is lowered significantly (from 20 atoms
to 6 atoms per molecule). Second, with the elimination of individual H atoms, which
typically have bond vibrational frequencies at sub-femtoseconds, the simulation time-
steps can be stretched to a few femtoseconds.

In ReaxFF, all atoms must be modeled separately to correctly capture reactions.
We use the Avogadro program [23] for approximately placing the missing H atoms
on the GROMACS output configurations. Avogadro places H atoms onto the hex-
ane backbone based on the local topology only, it does not take into account the
presence of nearby hexane molecules. Therefore, we energy minimize the resulting
configurations with H atoms added for 2.5 ps using sPuReMD and equilibrate them
under NVT at 200 K for another 2.5 ps. Analysis on the final configurations suggest
that sPuReMD produces hexane structures that are in near-perfect agreement with
experimental results in [21] and geometry optimizations based on ab-initio methods
(CPMD software [24] using PBE Troullier-Martins pseudopotentials). These results
are presented in Tab. 5.1.

Table 5.1
Structural properties of hexane molecules obtained through different simulation methods

(ReaxFF, a reactive force field, and CPMD, an ab-initio MD method) compared to experimental
results.

property ReaxFF ab-initio experimental [21]
C-H bond 1.09± 0.01 1.100 1.118± 0.006
C-C bond 1.57± 0.01 1.533 1.533± 0.003
<C-C-C 108.0± 2.9 114.2 111.9± 0.4
<C-C-H 111.0± 0.0 109.5 109.5± 0.5
<H-C-H 106.6± 0.0 106.5 −
qC-tip −0.171 −0.205 −
qC-mid −0.080 0.033 −
qH-tip 0.040 0.047 −
qH-mid 0.040 −0.10 ∼ 0.10 −

6. Performance Analysis. We compare the performance of our ReaxFF imple-
mentation, sPuReMD, to other MD codes. First, we compare sPuReMD with other
MD methods to provide an idea of where ReaxFF sits within the spectrum of MD
methods in terms of simulation capabilities. We then compare the performance of
sPuReMD to the state of the art ReaxFF implementation available over the public
domain, the REAX package [26] inside LAMMPS [14, 28].

6.1. Comparison with other MD methods. We examine the time-scales
and system sizes where different molecular simulation methods, namely classical MD,
ReaxFF, and ab-initio methods, are applicable. We use GROMACS as a represen-
tative of classical MD methods, sPuReMD as a reactive MD method, and CPMD
as an ab-initio method. For this purpose, we prepare various hexane systems of dif-
ferent sizes (343, 512, 1000, 1728, 3375 molecules) as described in Section 5 to be
used in GROMACS and sPuReMD simulations. For each method, only single pro-
cessor simulations are performed to quantify true computational cost, independent
of parallelization overheads. This limits our ability to work with large systems using
CPMD, though. Systems used in CPMD simulations (1, 3 and 5 molecules) are formed
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by selecting closeby molecules from the large simulation boxes used with sPuReMD.
Due to the small size of CPMD systems, we drop the periodic boundary conditions
in CPMD simulations and use the PBE approximation to DFT and corresponding
Trouiller-Martins norm-conserving pseudo-potentials with a wave-function cut-off of
75R̃ydberg for both C and H atoms.
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Fig. 6.1. Log-log plot of the time spent per simulation step and total allocated memory for
different molecular simulation methods, namely CPMD (an ab-initio method), ReaxFF (a reactive
MD method), and GROMACS (a classical MD method).

Fig. 6.1 shows scaling of the run-time per time-step and total memory require-
ments of various molecular simulation methods. All simulations are performed under
the micro-canonical ensemble (NVE), and reported run-times are averaged values over
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several hundred steps. Reported memory requirements are the peak values observed
during the life time of simulations. The computational complexity of CPMD scales
as O(N3), and as we increase the system size, we must increase the box dimensions
to maintain accuracy without periodic boundary conditions. Therefore, we observe a
rapid increase in the run-time per time-step for CPMD simulations in Fig. 6.1. Grow-
ing box size causes a similar growth in memory requirements of CPMD simulations,
as well.

sPuReMD and GROMACS, on the other hand, exhibit similar scaling behaviors,
both in terms of run-time and memory allocated as indicated by almost parallel scaling
curves for both methods. Not surprisingly, sPuReMD is slower (by a factor of about
50), and requires significantly more memory (about two orders of magnitude) than
GROMACS. However, as noted before GROMACS does not explicitly model the
H atoms, and represents a hexane molecule with only six particles as opposed to
the 20 particles used in ReaxFF. While this simplified model reduces the number of
bonded interactions in GROMACS by about a factor of four, it has more significant
impact on the number of non-bonded pairs, decreasing the number of such pairs by
more than an order of magnitude. Considering that non-bonded force computations
takes about 90% of the total time in a typical classical MD simulations [25] and that
most of the allocated space is used for storing non-bonded pairs, the run-time per
time-step and memory footprint of GROMACS simulations would approach those of
sPuReMD, had H atoms been modeled explicitly. There is the additional burden
of computing bonds, 3-body, and 4-body structures dynamically and equilibrating
charges at every step of a ReaxFF simulation, and this explains the larger running time
per time-step and memory footprint figures for sPuReMD. Nevertheless, we believe
the demonstrated performance of sPuReMD is extremely promising, considering its
significantly enhanced simulation scope.

Of notable interest in Fig. 6.1 is the jump in sPuReMD’s run-time per time-
step between hexane512 and hexane1000. To shed more light on the reasons for this
super-linear scaling, we identify six major components in sPuReMD:

• nbrs: neighbor generation, where all atom pairs falling within the neighbor
cut-off distance rnbrs are identified.

• init: generation of the charge equilibration (QEq) matrix, bond list, and
H-bond list based on the neighbor list.

• bonded: the part that includes computation of forces due to all interac-
tions involving bonds (hydrogen bond interactions are included here as well).
This part also includes identification of 3-body and 4-body structures in the
system.

• ilu: the part where we compute the ILU-based preconditioners for the QEq
matrix.

• QEq: the charge equilibration part that requires the solution of a large sparse
linear system. This involves computationally expensive matrix-vector prod-
ucts.

• nonb: the part that computes nonbonded interactions (van der Waals and
Coulomb).

In Tab. 6.1, we show how the run-time for each of these parts (except for ilu)
changes as the system size increases. As can be seen, the run-time for every part
except for QEq scales linearly with the system size. However, due to cache effects, as
we move beyond hexane512 system (10240 atoms), the matrix-vector product becomes
costlier and causes the jump mentioned above. This is reflected as the increased share
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of QEq within the total run-time per time-step beyond hexane512.

Table 6.1
Break-down of sPuReMD run-time into major components. For each system, we show the total

time, nbrs, init, bonded, nonb and QEq running times in seconds. The last column presents the
percentage of QEq run-time within the total time.

system #atoms total nbrs init bonded nonb QEq QEq(%)
hexane343 6860 0.44 0.02 0.17 0.09 0.11 0.04 9
hexane512 10240 0.66 0.03 0.25 0.13 0.16 0.06 9
hexane1000 20000 1.66 0.06 0.50 0.26 0.32 0.48 29
hexane1728 34560 2.88 0.10 0.87 0.45 0.58 0.81 28
hexane3375 67500 5.59 0.18 1.69 0.88 1.10 1.59 28

ILU factorization is not performed at every step, to amortize its cost as discussed
in Section 3.3. Therefore we do not explicitly present ilu running times in Tab. 6.1.
For all sPuReMD experiments reported in this Section, the threshold for the QEq
solver was set to 10−6 and we perform the ILU factorizations once every 100 steps. The
ILU-based preconditioning scheme described in Section 3.3.3 takes only 5-6 iterations
per step using PGMRES algorithm to solve the QEq problem. The cost of ILU
factorization is about 0.30 s for the hexane343 system and 2.80 s for the hexane3375

system, which is negligible when averaged over 100 steps. These figures also suggest
that ilu scales nicely with the system size.

6.2. Comparison with existing implementations. The first-generation ReaxFF
implementation of van Duin et al. [9] demonstrated the validity of the force-field in
the context of various applications. Thompson et al. [26] successfully ported this ini-
tial implementation, which was not developed for a parallel environment, into their
parallel MD package LAMMPS [14]. Except for the charge equilibration part, the
ReaxFF implementation in LAMMPS is based on the original FORTRAN code of
van Duin [9], significant portions of which were included directly (as Fortran routines
called from C++) to ensure consistency between the two codes.

Table 6.2
Comparison of LAMMPS and sPuReMD performance on a single processor for different sys-

tems. For each system, we present the number of atoms in the simulation, LAMMPS and sPuReMD
run-times per time-step (in seconds) on average and the speed-up achieved by sPuReMD over
LAMMPS.

system #atoms LAMMPS (s) sPuReMD (s) speed-up
PETN crystal 3712 2.61 0.35 7.5
bulk water 6540 3.61 0.58 6.2
hexane343 6860 3.73 0.44 7.8

In Tab. 6.2, we compare the performance of sPuReMD to the LAMMPS code for
validation systems described above. For each system, we report the average run-time
per step for both codes . Our results show that sPuReMD achieves a six to seven
fold speed-up over LAMMPS, due to various algorithmic and numerical enhancements
presented in this paper. Note that LAMMPS is a parallel MD simulation program,
therefore it contains some potential overheads due to communications. On a single
processor these overheads are not significant – at the end of each simulation, commu-
nication time reported by LAMMPS accounts for less than 1% of the total time.
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Table 6.3
Comparison of the QEq solvers in LAMMPS and sPuReMD codes on different systems. For

each system, we present the charge equilibration time (in seconds) and the number of iterations
taken per step by the QEq solvers in LAMMPS and sPuReMD.

LAMMPS sPuReMD
system QEq (s) QEq iters QEq (s) QEq iters
PETN crystal 0.19 32 0.02 5
bulk water 0.38 34 0.04 6
hexane343 0.40 35 0.04 6

Among various optimizations, our ILU-based preconditioning scheme for solving
the QEq problem stands out. In Tab. 6.3, we compare the average time and number
of iterations per step required by the QEq solvers in both codes. The charge equili-
bration calculation currently in LAMMPS uses a standard parallel conjugate gradient
algorithm [27]. Compared to this, our advanced QEq solver delivers about an order
of magnitude improvement in performance.

Table 6.4
Comparison of the memory foot-prints of LAMMPS and sPuReMD codes on different systems.

For each system, we present the amount of memory required by LAMMPS and sPuReMD in MBs.

system LAMMPS (MB) sPuReMD (MB)
PETN crystal 2500 170
bulk water 2500 250
hexane343 2500 270

Finally, in Tab. 6.4 we compare the memory foot-print of both codes. Since the
LAMMPS implementation uses static allocation for atom, neighbor, and interaction
lists, it exhibits a constant memory foot-print for all simulations. However, sPuReMD
is able to achieve a considerably smaller memory foot-print owing to its intelligent
memory management scheme. This scheme allows us to work with systems much
larger sizes without having to tune compilation parameters.

7. Concluding remarks. In this paper, we present the design, implementa-
tion, algorithms, data-structures, and optimizations underlying the state-of-the-art
sPuReMD package for reactive molecular dynamics simulations. We demonstrate
that sPuReMD is: (i) highly accurate in terms of modeling accuracy, (ii) has linear
scaling memory and run-time characteristics in terms of system size, (iii) is signifi-
cantly faster than existing/comparable packages, and (iv) has been demonstrated in
diverse application contexts, ranging from biomembranes (lipid bilayers) to explosives
(PETN).

sPuReMD represents a unique resource for the scientific simulations community.
It is in limited release and is currently in use at over ten institutions (including MIT,
CalTech, Penn State, Illinois, Purdue, USF, Sandia, LANL, ORNL, and ARL). It is
being used to model systems ranging from novel nano-scale devices (ORNL), materials
models (Purdue, Penn State), explosives (ARL), and biophysical simulations (USF,
CalTech). It also provides a basis for software, model, and method development
(Sandia, Penn State).
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