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Abstract

Molecular dynamics modeling has provided a powerful tool for simulating and

understanding diverse systems – ranging from materials processes to biophysi-

cal phenomena. Parallel formulations of these methods have been shown to be

among the most scalable scientific computing applications. Many instances of

this class of methods rely on a static bond structure for molecules, rendering

them infeasible for reactive systems. Recent work on reactive force fields has re-

sulted in the development of ReaxFF, a novel bond order potential that bridges

quantum-scale and classical MD approaches by explicitly modeling bond activity

(reactions) and charge equilibration. These aspects of ReaxFF pose significant

challenges from a computational standpoint, both in sequential and parallel

contexts. Evolving bond structure requires efficient dynamic data structures.

Minimizing electrostatic energy through charge equilibration requires the solu-

tion of a large sparse linear system with a shielded electrostatic kernel at each

sub-femtosecond long timestep. In this context, reaching spatio-temporal scales

of tens of nanometers and nanoseconds, where phenomena of interest can be

observed, poses significant challenges.

In this paper, we present the design and implementation details of the Pur-

due Reactive Molecular Dynamics code, PuReMD. PuReMD has been demon-
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strated to be highly efficient (in terms of processor performance) and scalable.

It extends current spatio-temporal simulation capability for reactive atomistic

systems by over an order of magnitude. It incorporates efficient dynamic data

structures, algorithmic optimizations, and effective solvers to deliver low per-

timestep simulation time, with a small memory footprint. PuReMD is com-

prehensively validated for performance and accuracy on up to 3K cores on a

commodity cluster (DoE/LLNL/Hera). Potential performance bottlenecks to

scalability beyond our experiments have also been analyzed. PuReMD is avail-

able over the public domain and has been used to model diverse systems, ranging

from strain relaxation in Si-Ge nanobars, water-silica surface interaction, and

oxidative stress in lipid bilayers (biomembranes).

1. Introduction

Conventional atomistic modeling techniques rely on quantum-mechanical

methods or on traditional molecular dynamics approaches. Quantum-scale mod-

eling requires computationally expensive solution of the electronic Schrodinger

equation, restricting its applicability to systems on the order of thousands of

atoms and picosecond simulation timeframes. Classical molecular dynamics

(MD) approaches, on the other hand, overcome the time and size limitations of

quantum methods by approximating the nucleus together with its electrons into

a single basis. These methods rely on careful parametrization of various atomic

interactions corresponding to bonds, valence angles, torsion, van der Waals in-

teractions, etc. based on detailed quantum mechanical simulations. In spite of

these approximations, classical MD methods have been successful in elucidating

various phenomena inaccessible to either quantum methods or to experiments.

Classical MD approaches typically rely on static bonds and fixed partial

charges associated with atoms. These constraints limit their applicability to

non-reactive systems only. A number of recent efforts have addressed this limi-

tation [1, 2, 3, 4, 5]. Among these, ReaxFF, a novel reactive force field developed

by van Duin et al[6], bridges quantum-scale and classical MD approaches by ex-
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plicitly modeling bond activity (reactions) and charge equilibration. The flexi-

bility and transferability of the force field allows ReaxFF to be easily extended

to systems of interest. Indeed, ReaxFF has been successfully applied to diverse

systems, ranging from materials modeling to biophysical systems [6, 7, 8, 9].

ReaxFF is a classical MD method in the sense that atomic nuclei, together

with their electrons, are modeled as basis points. Interactions among atoms

are modeled through suitable parametrizations and atomic motion obeys laws

of classical mechanics. Accurately modeling chemical reactions, while avoiding

discontinuties on the potential energy surface, however, requires more com-

plex mathematical formulations of interactions than those in most classical MD

methods (bond, valence angle, dihedral, van der Waals potentials). In a reac-

tive environment in which atoms often do not achieve their optimal coordination

numbers, ReaxFF requires additional modeling abstractions such as lone pair,

over/under-coordination, and 3-body and 4-body conjugation potentials, which

further increase its computational complexity. This increased computational

cost of bonded interactions (due to the reconstruction of all bonds, 3-body and

4-body structures at each time-step and much more complex bonded interac-

tion formulations) approaches the cost of nonbonded interactions for ReaxFF,

as we discuss in section 5. Note that for typical conventional MD codes, the time

spent on bonded interactions is significantly lower than that spent on nonbonded

interactions [27].

An important part of ReaxFF is the charge equilibration procedure. Charge

equilibration (QEq) procedure [18] approximates the partial charges on atoms

by minimizing the electrostatic energy of the system. Charge equilibration is

mathematically formulated as the solution of a large sparse system of equations.

This solve needs to be performed accurately at each time-step – since it signif-

icantly impacts forces and total energy of the system. Since partial charges on

atoms are fixed in conventional MD, this is not a consideration for conventional

methods. The time-step lengths for ReaxFF simulations is typically an order of

magnitude smaller than conventional MD (tenth of femtoseconds as opposed to

femtoseconds), therefore scaling the solve associated with charge equilibration
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is a primary design consideration for parallel formulations of ReaxFF. Suitably

accelerated Krylov subspace methods are used for this purpose (see Section 4.5).

One of the major challenges overcome by our effort is the scaling of this solve

to thousands of processing cores.

In this paper, we present the design and implementation details of the

PuReMD (Purdue Reactive Molecular Dynamics) code, along with a com-

prehensive evaluation of its performance on a large commodity cluster (Hera

at the Department of Energy/ Lawrence Livermore National Lab) using over

3K processing cores. PuReMD incorporates several algorithmic and numerical

innovations to address significant computational challenges posed by ReaxFF.

It achieves excellent per time-step execution times, enabling nanosecond-scale

simulations of large reactive systems (Section 5). Using fully dynamic inter-

action lists that adapt to the specific needs of simulations, PuReMD achieves

low memory footprint. Our tests demonstrate that PuReMD is upto five times

faster than competing implementations, while using significantly lower memory.

The rest of this paper is organized as follows: We overview related work on

parallel ReaxFF in Section 2. In Section 3, we discuss critical design choices

for parallelization of ReaxFF. In Section 4, we outline various algorithms and

numerical techniques used to achieve excellent computational times per simu-

lation timestep. We comprehensively analyze the performance of PuReMD in

Section 5. We conclude with a discussion of potential bottlenecks to further

scaling, solutions to these bottlenecks, and techniques for further improvements

to overall simulation time.

2. Related Work

The first-generation ReaxFF implementation of van Duin et al. [6] demon-

strated the validity of the method in the context of various applications. Thomp-

son et al. [10] successfully ported this initial implementation, which was not de-

veloped for a parallel environment, into their parallel MD package LAMMPS [12].

Except for the charge equilibration part, the ReaxFF implementation in LAMMPS

is based on the original FORTRAN code of van Duin [6], significant portions of
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which were included directly (as Fortran routines called from C++) to insure

consistency between the two codes since the Fortran ReaxFF underwent rapid

development at the time. Thus the LAMMPS implementation does not take

advantage of certain optimizations described in this paper. The charge equi-

libration calculation currently in LAMMPS uses a standard parallel conjugate

gradient algorithm for sparse linear systems [11]. Indeed, efforts are under way

to integrate our kernel parallel ReaxFF functions into LAMMPS, in close collab-

oration with Aidan Thompson at Sandia National Labs. Our preliminary tests

on the sample systems discussed in this paper reveal that PuReMD is up to

five times faster than LAMMPS on a single processor. Detailed single-processor

performance comparisons of the two codes are presented in [15]. In Section 5, we

present comparisons of LAMMPS and PuReMD codes under weak and strong

scaling scenarios.

To the best of our knowledge, the only other reported parallel ReaxFF for-

mulation is due to Nomuro et al. [14]. This paper demonstrates good scaling

results. However, its per-timestep-per-atom execution times are up to an order

of magnitude slower than the results we report in this paper. Consequently,

even though, their reported efficiencies at approximately 3K cores are higher

than ours (our code achieves about 80% efficiency), their simulation time is

significantly higher than that reported in this paper.

PuReMD is a publicly available parallel ReaxFF implementation with demon-

strated scalability to thousands of processing cores. It has been validated by us

and by other research groups on diverse systems, ranging from strain relaxation

in Si-Ge nanobars [16], water-silica systems [17], and oxidative stress in lipid

bilayers (membranes) (Fig. 1).

3. Parallel Formulation of ReaxFF

In this section, we discuss the two important aspects of parallel ReaxFF

implementation – problem decomposition and inter-process synchronization/

communication. We refer to the domain of simulation specified in the input

files as the simulation box, and the part assigned to a process as the sub-domain
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Figure 1: Applications using PuReMD: (a) Si-Ge nanobar system, (b) Water-Silica interface,
(c) lipid bilayer system.

of that process. A significant fraction of the computation associated with an

atom involves other atoms within a prescribed distance from the source atom.

To facilitate these computations, we construct a list of neighbors for each atom.

These neighbor lists are generated by embedding a 3D grid within each process’

sub-domain. Partitions induced by this 3D grid are called cells or grid cells.

Domain partitioning and inter-process communication are determined by the

mathematical formulations of various interactions in ReaxFF. Precise mathe-

matical details of the energy and force formulations in ReaxFF are beyond the

scope of this paper; we refer the readers to the original ReaxFF formulation de-

scribed in [6]. An important aspect of ReaxFF that significantly impacts design

choices is that it uses shielded electrostatics, modeled by range-limited pairwise

interactions with Taper corrections. This obviates the need for computation of

long range electrostatic interactions.
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3.1. Problem Decomposition

Commonly-used decomposition techniques for MD simulations include atom

decomposition, interaction decomposition, and domain decomposition. The spe-

cific choice among these is influenced by the characteristics of the force field,

with a view to minimizing communication overhead and load imbalance. While

atom and force decomposition techniques deliver good load balance, movement

of atoms and associated data results in a highly dynamic inter-process commu-

nication pattern. This is generally handled by periodic re-decompositions. How-

ever, the simplicity of domain decomposition techniques coupled with its natural

handling of the range-limited interactions make it a popular choice [25, 26, 23].

Load balancing in domain decomposition is achieved by suitably partitioning

the simulation box into sub-domains with equal computational load. Volumes

of sub-domains are altered dynamically to ensure equal workload among pro-

cesses as the simulation progresses.

Atom or force decomposition techniques are not well-suited to ReaxFF im-

plementations due to the dynamic nature of bonds. The presence of charge

equilibration and associated linear system solve, which takes up a significant

portion of the total simulation time, poses additional considerations not present

in conventional MD codes. PuReMD adopts a 3D domain decomposition tech-

nique with wrap-around links (a torus) for periodic boundary conditions. This

domain decomposition also induces a partition of the degrees of freedom for

parallel charge equilibration.

3.2. Boundary Regions

In addition to domain decomposition, a number of other design choices crit-

ically impact the performance of PuReMD. These primarily relate to handling

of inter-process communication and synchronizations.

• Interactions spanning process boundaries: In order to avoid un-

necessary computation while ensuring accurate calculation of energy and

forces resulting from interactions spanning process boundaries, an efficient
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coordination mechanism among processes must be designed. Since inter-

actions are primarily range-limited, a shell of the process’ sub-domain

is associated with inter-process interactions. We refer to this shell as

the outer-shell. Handling communication (one-sided vs. symmetric data

transfers) and computation (redundant computation of symmetric terms

vs. communication of computed terms) associated with the outer shell

impact performance.

• Inter-process communication: Once we determine atoms that must be

communicated based on the outer-shell type chosen, communication can

take place either through direct messaging or in a staged manner [26].

We now discuss these issues in more detail and explain how we handle each

in PuReMD.

3.2.1. Interactions Spanning Multiple Processes

We first describe our handling of interactions that span multiple processes,

since this motivates our choice of the outer-shell type. We specifically focus on

bond-order potentials, and associated dynamic bonded interactions in ReaxFF.

Handling range-limited non-bonded interactions have already been well-studied

in literature [25, 24, 26]. After carefully analyzing different ways of handling

bonded interactions in ReaxFF that span multiple processes, we outline the

scheme used in PuReMD below:

• Bond(i,j): The process that owns the atom with the smaller index (in-

dices are unique and are determined by a field in the input file) handles

the bond.

• LonePair(i): This is a single body potential and the owner of atom i

computes the energy and forces resulting from the unpaired electrons of

atom i.

• Over/Under-coordination(i): These are multi-body interactions, di-

rectly involving all bonded neighbors of atom i, computed by the owner

of i.
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• Valence Angle(i,j,k): This includes the valence angle, penalty, and

three-body conjugation potentials, all of which are computed by the owner

of middle atom j.

• Dihedral Angle(i,j,k,l): This includes the torsion and four-body conju-

gation potentials, both of which are handled by the owner of middle atom

with the smaller index. Middle atoms here are j and k.

• Hydrogen Bond(x,H,z): The presence of a dynamic bond between

atoms x and H implies that the owner of H atom computes this hydrogen

bond interaction.

• Nonbonded(i,j): As in the bonded case, the owner of the atom with

the smaller index computes the van der Waals and Coulomb interactions

between atoms i and j.

Establishing this coordination mechanism enables us to avoid double (or

multiple) computation of interactions straddling process boundaries. The ratio

of such interactions to those entirely within process sub-domains can be signif-

icant, especially as sub-domain volumes decrease. The potential drawback of

this approach is the return messages containing forces required at the end of

each time-step, when processes need to compute the total forces on their as-

signed atoms. We adopt this approach in PuReMD, since force computations

in ReaxFF are relatively expensive compared to associated additional commu-

nication.

While we avoid double computations for expensive potential terms, we per-

form redundant computations in order to avoid the reverse communication dur-

ing the matrix-vector multiplications associated with the charge-equilibration

solve. This strategy results in slightly worse performance on small numbers

of processing cores due to redundant computations; however, it delivers better

performance by eliminating a costly communication step as we scale to larger

number of cores.
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Figure 2: Different outer-shell types commonly used in MD codes shown in 2D for purposes
of simplicity: (a) full-shell, (b) half-shell, (c) midpoint-shell, (d) an example NT method:
tower-plate shell. In all cases we assume the process sub-domain to be an orthogonal cube
whose sides have length b. r denotes the width of the outer-shell.

3.2.2. Choosing the Outer-Shell

The range-limited nature of force fields, associated symmetries, and relative

speed of computation and communication of a parallel platform motivate the

choice of full-shell, half-shell, midpoint-shell or neutral territory (zonal) meth-

ods [28], see (Fig. 2). In full-shell methods, interactions between atoms i and

j are computed at processes that hold atoms i and j. This implies that data

needed to compute these interactions must be symmetrically exchanged, result-

ing in higher communication. However, where such interactions are symmetric,

the results do not need to be communicated. In half-shell methods, interactions

between atoms i and j are computed at the process responsible for atom i or

j. This choice is uniformly enforced by convention (in our case for example,

the process that owns the atom with the lower index). The communication

overheads associated with a half-shell implementations is lower since the data
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required does not need to be symmetrically exchanged. In mid-point method,

the interaction between i and j is computed by the process which owns the

geometric mid-point of i and j. This method requires the exchange of a thin-

ner outer-shell thereby reducing the communication bandwidth requirements.

Finally in neutral territory methods, forces between atoms i and j are not nec-

essarily calculated by processes that own either atom. These methods have been

shown to yield lower communication overheads by making very efficient use of

data communicated between processes. However, their applicability is resricted

to the context of range-limited N-body simulations.

To motivate our choice of the outer shell, we illustrate in Fig. 3, position

information of atoms at neighboring process (P2) required by a process (P1)

to compute all ReaxFF interactions that it is responsible for, based on the

conventions we have adopted in Section 3.2.1. In ReaxFF, there are different

cut-off distances for different types of interactions: rbonded is the distance cut-off

for determining bonds, rhbond is the distance between the donor and acceptor in

a Hydrogen bond interaction and finally rnonb denotes the cut-off distance for

non-bonded interactions. Taking the maximum spans among all interactions,

we determine the outer-shell width rshell as:

rshell = max(3× rbond, rhbond, rnonb) (1)

A careful inspection of Fig. 3 reveals that the nature of bonded interactions

in ReaxFF does not allow the use of half-shell boundaries or zonal methods.

Due to over/under-coordination and valence angle interactions, even when the

midpoint boundary method is used, rshell does not shrink at all. Consequently,

we use the full-shell scheme in spite of its higher communication cost.

3.2.3. Inter-process Communication

With the choice of 3D domain decomposition scheme and full-shell type for

the outer-shells of processes, inter-process communication can be performed us-

ing either direct messaging or staged messaging schemes (see Fig. 4). In direct

messaging, every process prepares a separate message for each of its neighbors
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P1 P2
bond(i,j)

lone-pair(i)

over/under-coord(i)

valence angle(i,j,k)

dihedral angle(i,j,k,l)

hbond(x,h,z)

= 2 rbond_cut

= 2 rbond_cut

= 3 rbond_cut

nonbonded(i,j)

= 3 rbond_cut

= 3 rbond_cut

= rHbond_cut

= rnonb_cut

Figure 3: Handling of each interaction in ReaxFF when it spans multiple processes. Blue
colored circles represent atoms that directly participate in the interaction. Gray colored
circles represent atoms that directly or indirectly affect the interaction’s potential and therefore
experience some force due to it. We show only such atoms in the neighboring process for clarity.
Lighter tones imply weaker interaction. Next to each interaction, we note its maximum span
in terms of the cut-off distances in ReaxFF.

containing the required data and sends these messages using point-to-point com-

munication primitives. The upside of this scheme is that communication and

computation can be overlapped, i.e., after preparing and sending a message us-

ing a non-blocking send operation, a process can immediately start preparing

the message for its next neighbor without having to wait for the completion of

the send operation. The downside is the number of messages that need to be

sent by each process. Even when we restrict the sub-domain dimensions to be

greater than rshell, each process needs to talk to 26 other processes (three-cube
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(a) Direct messaging in 2D

Processor sub-domain

Export region

Import region

(b) Staged messaging in 2D

Processor sub-domain

Export in stage2Export in stage1

Import in stage2Import in stage1

stage1 stage1

stage2

stage2

Figure 4: Direct messaging vs staged messaging shown in 2D for simplicity.

minus the self box) and the communication pattern does not truly follow the

3D torus topology that we adopt.

In the staged messaging scheme, every process sends/receives messages along

a single dimension in each stage. In a three-stage communication scheme, for

example, each process sends/receives atoms in -x, +x dimensions first, then in

-y, +y dimensions and finally in -z, +z dimensions; at each stage augmenting its

subsequent messages with the data it receives in previous stages. The upside of

this scheme is that each process needs to communicate with few other processes

(this scheme would require only 6 messages to be sent/received, compared to

the 26 send/receives with the direct messaging scheme above). Moreover, the

communication pattern respects the 3D torus topology which assumes direct

connections between nodes in -x, +x, -y, +y, -z and +z directions only. However,

the staged messaging scheme requires a stop-process-forward mechanism that

does not allow overlapping communication and computation. For example, when
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Figure 5: Comparison of PuReMD performances using staged vs. direct messaging schemes.
We present the total time performance together with communication bound parts in each
case: QEq and comm (explained in Section 5)

a process receives its messages in -x, +x directions, it needs to sort the incoming

data to determine what needs to be forwarded in -y, +y, -z, +z directions.

Since both schemes have benefits and overheads that are hard to quantify

in a platform-independent manner, we implement both schemes and perform

strong scaling tests using both schemes. We present the results of this com-

parison in Fig. 5; details of the simulations are presented in Section 5. The

performance of the two schemes is almost identical upto 64 cores. Beyons this,

the staged messaging scheme clearly outperforms direct messaging. Ironically,

when we reach 512 cores, total time required using staged messaging is almost

equal to the charge equilibration time of direct messaging. At this point, while

direct messaging shows signs of hitting the scalability barrier, staged communi-

cation scheme’s curve suggests that it can scale nicely to larger number of cores.

Based on these experiments, PuReMD uses a staged messaging scheme for all

communications between neighbor processes. In fact, other MD packages such

as Desomnd [26] and LAMMPS [12] use similar messaging schemes as well.
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4. Algorithmic and Numerical Techniques

PuReMD features several algorithmic and numerical techniques to achieve

excellent per-timestep execution time. Its fully dynamic and adaptive interac-

tion lists further improve performance and enable the simulation of large systems

on platforms with limited resources. In this section, we provide a summary of

the algorithms and techniques used; for a more comprehensive description of

these techniques, we refer readers to [15].

4.1. Generation of Neighbors Lists

As in most MD codes, we use the method of binning for efficiently generating

neighbor lists for atoms. This requires construction of a 3D grid within each

process’ sub-domain. Based on their spatial coordinates, each atom is mapped

into its corresponding cell. In order to discover neighbors of an atom, it is

sufficient to search within the neighboring/nearby cells (provided bin-sizes are

suitably selected). Empirically, we determine that setting the dimensions of

grid cells to half of the neighbor cut-off distance rnbrs yields best performance.

Furthermore, reordering atoms so that atoms mapped to the same grid cell

are clustered together in the atom list improves the performance of neighbor

generation due to cache effects. This reordering also has significant impact on

the performance of force computation routines and matrix-vector multiplications

in charge equilibration. Reordering atoms also allows us to cut the number of

look-ups in neighboring cells by half, on average. This is because it is enough for

each atom to search for its neighbors inside only neighboring cells that contain

atoms with higher indices in the reordered atom list. We further reduce the

number of neighbor cell look-ups by first checking the distance between the

atom and the closest point of the neighboring cell to that atom. All these

optimizations give us a very efficient neighbor generation procedure.

4.2. Eliminating Bond Order Derivative Lists

All bonded potentials (including the hydrogen bond potential) depend on

the bond order (or bond strength) between atoms. Bond order concept which
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constitutes the heart of the dynamic bonding scheme in ReaxFF depends on the

type of the two atoms forming the bond, the distance between them and the

presence of other atoms within the bond cut-off distance rbond. Consequently,

all forces arising from bonded interactions depend on the derivative of the bond

order terms [6].

Let BOij denote the bond between atoms i and j. The strength of this bond

is affected by the presence of other atoms around atoms i and j. Therefore, the

expression dBOij/drk would evaluate to a non-zero value for all atoms k that

share a bond with either atom i or j. The number of such atoms can run upto

20 to 25, or higher in most systems. Considering the fact that a single bond

takes part in various bonded interactions, we may need to evaluate the expres-

sion dBOij/drk several times over a single time step. An obvious approach to

efficiently computing forces from bond order derivatives is to evaluate the bond

order derivative expressions at the start of each timestep and to use repeat-

edly, as necessary. Besides the large amount of memory required to store the

bond order derivative list, this approach also has implications for costly memory

lookups during the time-critical force computation routines.

We eliminate the need for storing the bond order derivatives and frequent

look-ups to DRAM by delaying the computation of the derivative of bond orders

until the end of a timestep. During the computation of bonded potentials, we

accumulate the coefficients for the corresponding bond order derivative terms

arising from various interactions into a scalar variable CdBOij . In the final

step, we evaluate the expression dBOij/drk and add the force CdBOij × dBOij

drk

to the net force on atom k directly.

(c1 ×
dBOij

drk
+ c2 ×

dBOij

drk
+ . . . cn ×

dBOij

drk
) =

(c1 + c2 + cn)× dBOij

drk
= CdBOij ×

dBOij

drk
(2)

Eq. 2 illustrates the idea explained above. This simple technique enables us
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to work with much larger systems on a single processor by saving us considerable

memory. It also saves significant computational time.

4.3. Truncating Bond Related Computations at the Outer-Shell

As mentioned before, bonded interactions in ReaxFF are expensive. To

correctly compute bonded interactions at the boundaries, we need to compute

the bonds in the outer-shell as well. If this is not done appropriately, scalability

of bond related computations can be severely constrained. Since we choose the

outer-shell to be a full-shell, the ratio of the outer-shell volume to the process

domain volume can be as high as 20 when we take b = r in Fig. 2, where b

denotes the length of a side of the process sub-domain which we assume to

be an orthogonal cube and r corresponds to the outer-shell width. Therefore

depending on their proximity to process boundaries, some bonds might need to

be computed several times in the extreme case of b = r.

A close examination of Fig. 3 reveals that for each atom, we need to know

bonds that are only three hops into the outer-shell. Consequently, in PuReMD,

we restrict the computation of bonds inside the outer-shell to those that are at-

most three hops away from the subdomain of a process. As we show in Section 5,

we obtain excellent scaling for bond related computations in PuReMD.

4.4. Lookup Tables for Nonbonded Interactions

In general, computing nonbonded forces is more expensive than computing

bonded forces, due to the larger number of interactions within the (larger) cut-

off radii, rnonb, associated with nonbonded interactions. However, the simple

form of nonbonded interactions (pairwise interactions) allows the use of a lookup

table and approximation of complex expressions by means of interpolation. This

is a common optimization technique used by many MD codes that yields sig-

nificant performance improvements with relatively little impact on accuracy. In

PuReMD, we make use of this technique through cubic spline interpolations.

All test results presented in Section 5 utilize this optimization.
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4.5. Charge Equilibration

Charge equilibration corresponds to the problem of assigning partial charges

to atoms with a view to minimizing electrostatic energy under constraints of

charge neutrality. In the absence of electronic degrees of freedom, we do this

using the QEq method developed by Rappe and Goddard [18]. We follow the

mathematical formulation of Nakano [19] for our QEq solver. Using the method

of Lagrange multipliers to solve the minimization problem described in detail

in [18], we obtain two sparse linear systems:

−χk =
∑

i

Hiksi (3)

−1 =
∑

i

Hikti, (4)

where H denotes the coefficient matrix which is an N ×N matrix, N being the

number of atoms in the system. Partial charges are computed as solutions to

these linear systems:

qi = si −
∑

i si∑
i ti

ti (5)

The high computational cost of direct solvers for large systems (107 degrees

of freedom and beyond) renders them unsuitable for our application. We rely

on well-known Krylov subspace methods – our sequential implementation [15]

relies on an ILUT preconditioned GMRES method [21, 22], and our parallel

implementation on a diagonally scaled Conjugate Gradients (PCG) method.

Diagonal scaling works nicely as a cheap and effective preconditioner for the

QEq problem because the coefficient matrix H carries a heavy diagonal. Con-

sequently, all results reported in this paper use a diagonally scaled parallel CG

solver for charge equilibration [20].

It is important to solve the QEq problem to high accuracy (low residual),

otherwise the energy of the system shows unacceptable drifts during constant

energy (NVE) simulations. A relative residual norm of 10−6 generally provides

satisfactory results. However, even at this tolerance level, the charge equilibra-

tion part requires significant computation and communication time as discussed

in Section 5. Therefore it is important to improve the performance of the QEq
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Table 1: Average number of iterations required by the diagonally scaled PCG solver using
different initial guesses during the simulation of a bulk water system under the NV E ensemble.
PCG tolerance is set to 10−6.

initial guess for step t eq. 3 eq. 4
initial guess = 0 42 33
solution from step t− 1 27 16
linear extrapolation 19 11
quadratic extrapolation 15 6
cubic extrapolation 11 9

solver in order to achieve good performance and scalability results. Below, we

describe simple, yet effective techniques used in PuReMD.

Make a good initial guess: An important observation is that in ReaxFF

timesteps are on the order of tenths of femtoseconds. Therefore, positions of

atoms change very slightly between successive time-steps. This observation

implies that solutions to Eq. 3 and Eq. 4 in prior time-step(s) yield good initial

guesses regarding solutions at the current time-step. Indeed, by making linear or

quadratic extrapolations on the solutions, better initial guesses can be obtained

for the QEq problem.

In Tab. 1, we present the effect of different extrapolation schemes on the

number of iterations required to solve eq. 3 and eq. 4. As can be seen, con-

vergence characteristics of both systems are different from each other. While

we can capture the evolution of the solution to Eq. 4 best with a quadratic

extrapolation scheme, the evolution of Eq. 3’s solution follows a cubic curve.

Consequently we obtain a simple but effective solver for the charge equilibra-

tion problem, namely a diagonally scaled parallel PCG solver that relies on

cubic extrapolations for Eq. 3 and quadratic extrapolations for Eq. 4.

Iterating Jointly: The PCG algorithm [20] includes one matrix-vector

product and two dot products as its major parts, in each iteration. In a sequen-

tial context, matrix-vector products dominate the QEq solve time. However, in

a parallel context, a significant portion of the QEq solve time is spent in com-

munications: two local communications (one staged messaging step for sharing

the updated vector contents with neighboring processes and another one for
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tallying the partial results from matrix-vector multiplication) and two global

communications (two all-reduce operations for dot products). As mentioned in

Section 3.2.1, we avoid the reverse communication at the expense of some re-

dundant computations. We further reduce the total number of communication

steps by iterating both systems and communicating their data together until

one of them converges (typically Eq. 4 converges first) and after that point we

iterate the remaining system by itself. For example, in a typical scenario, the

QEq solve takes 11 + 6 = 17 iterations (and matrix-vector multiplications) and

17× 3 = 51 communication steps if both systems described in Tab. 1 are solved

separately. By iterating them together, we still have to perform 17 matrix-

vector multiplications but now we need much fewer communication operations,

max(11, 6)× 3 = 33 to be precise.

4.6. Data-structures and Reallocation

In a reactive force field, the dynamic nature of bonds, three-body and four-

body interactions together with the significant amount of book-keeping required

for these interactions require large memory and sophisticated procedures for

managing allocated memory. With suitable choices for data structures for var-

ious lists maintained by ReaxFF, we can minimize the memory footprint of

PuReMD, while still providing efficient access to all lists for force computa-

tions.

We store neighbor lists and the QEq matrix in compressed sparse row (CSR)

format. Both of these lists are half lists, i.e., we store only the upper half of

the matrix in each case. The manner in which these lists are generated and

accessed is well-suited to the CSR format. Bond lists are stored as full lists in

modified CSR format. This is a full list because higher order bonded interactions

are derived from the bond list. We call the format of our bond lists modified

CSR format, because the space reserved for each atom on it is contiguous, but

the actual data stored is not. Before allocating the bond lists, we estimate

the number of bonds for each atom. Let ebi denote the number of estimated

bonds for atom i. We allocate max(2ebi,MIN BONDS) slots to atom i in
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the bond list. This conservative allocation scheme prevents any overwrites in

subsequent steps, while reducing the frequency of bond list reallocations through

the simulation.

Three-body interaction list is built from the bond list and stored in CSR

format indexed not by the individual atoms but by the bonds in the system.

Four-body structures are constructed from the three-body interactions. Four-

body structures are not stored, since there are no higher order interactions in

ReaxFF. Energy and forces due to the discovered four-body interactions are

computed on the fly.

We maintain a dedicated hydrogen bond list, since in ReaxFF, hydrogens

are often bonded to more than one atom, and the neighbors of hydrogen atoms

are spread throughout the entire neighbors list. The hydrogen bond list uses

the same modified CSR format as the bonds list.

In order to minimize the memory footprint of PuReMD, we adopt a three

stage memory management scheme: estimation, monitoring, and reallocation.

At the start of the simulation, the needs of each list are estimated conservatively.

During each step of the simulation, we monitor the utilization of lists carefully. If

the utilization of a list reaches a prescribed threshold, we reallocate that list. To

avoid significant overheads with reallocations (such as copying of stored data),

we ensure that the reallocation deamon is invoked only at specific instances.

5. Performance Characterization

In this section, we present a comprehensive analysis of the performance of

PuReMD. We examine its performance from two perspectives: weak scaling,

where we increase the system size (number of atoms) linearly with the number

of cores, and strong scaling, where we measure the scalability while increasing

the number of cores used for a given physical system (fixed number of atoms).

For all tests, we use the Hera cluster at Lawrance Livermore National Labs

(LLNL). Hera is comprised of 800 nodes, each with four AMD Opteron quad-core

processors clocked at 2.3 GHz (a total of 10800 cores, 127.2 TFLOP/s) and 32GB
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Figure 6: Architecture of a node in the Hera cluster [29]. Each processing unit is an AMD
Opteron quad-core having 8GB of dedicated memory. Total memory per node is 32GB.
Only one InfiniBand interface is available per node. Processors not directly connected to the
InfiniBand interface transfer their data through the HyperTransport links first.

memory (Fig. 6). Nodes are connected through an InfiniBand interconnect and

use MVAPICH2 for message passing.

We perform all our tests using a bulk water system under the micro-canonical

(NVE ) ensemble. The primary reason we choose a bulk water system for our

performance experiments is that the ReaxFF model for water includes almost

all interactions present in the ReaxFF formulation. Furthermore, water is al-

most ubiquitous in MD simulations and it has been the focus of many scientific

studies.

To better understand the results of our experiments, we identify six key parts

of PuReMD:

• comm: initial communications step with neighboring processes for atom

migration and boundary atom information exchange.
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• nbrs: neighbor generation step, where all atom pairs falling within the

neighbor cut-off distance rnbrs are identified.

• init forces: generation of the charge equilibration (QEq) matrix, bond

list, and H-bond list based on the neighbors list.

• QEq: is the charge equilibration part that solves a large sparse linear sys-

tem using the PCG method with a diagonal preconditioner. This involves

costly matrix-vector multiplications and both local and global communi-

cations.

• bonded: is the part that includes computation of forces due to all inter-

actions involving bonds (hydrogen bond interactions are included here as

well). This part also includes identification of 3-body and 4-body struc-

tures in the system.

• nonb: is the part that computes nonbonded interactions (van der Waals

and Coulomb).

Each of these parts has different characteristics: some are compute-bound,

some are memory-bound while others are inter-process communication-bound.

Together they comprise almost 99% of the total computation time for typical

systems. We perform detailed analyses of these major components to better

understand how PuReMD responds to increasing system sizes and increasing

number of cores. We also use these results to infer the impact of various machine

parameters on performance.

5.1. Weak Scaling Results

For the weak scaling test, we use a bulk water system consisting of 2180

water molecules (6540 atoms) inside a 40 × 40 × 40 Å3 orthogonal box. This

setup yields a water system of ideal density at room temperature.

Fig. 7 shows variation in simulation time per time-step as a function of

number of cores used in weak scaling experiments. The increase in CPU time

from 1 to 16 cores is primarily due to the init forces, QEq and nonb parts. With
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Figure 7: Weak scaling: Total time per step as a function of increasing number of cores
and system size. At 3375 cores, size of the simulated system is approximately 22 M atoms.
Per-step time for the six major PuReMD components are also shown.
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Figure 8: QEq solver requires 11 PCG iterations and 17 matrix-vector multiplications per step
on average. QEq scaling is significantly impacted by the global reductions (dot-products) as
the number of cores increases.

a single process, we use only one core out of 16 on a node; with 4 processes,

we use only one core on each processor; only when we go to 16 processes do we

utilize a node fully. Construction of the QEq coefficient matrix and interactions
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Table 2: Scalability of PuReMD for the Water system demonstrating over 78% efficiency at
3375 cores under weak scaling.

#cores QEq
total(%) eff.(%)

16 23 100
32 23 99
64 23 97
128 25 96
256 25 95
512 27 93
1024 29 90
1728 30 90
2048 31 88
3375 37 78

lists during init forces, matrix-vector multiplications in QEq, and computation

of nonbonded forces in nonb put considerable stress on the memory system.

When the processor is fully utilized (all four cores), this represents the major

performance bottleneck – consequently the degradation in performance. To be

able to correctly measure the weak scaling characteristics of PuReMD, we use

the 16 core runs, where a single node is fully utilized, as our base case in Tab. 2.

As we move beyond 16 cores, we observe that all parts except for QEq and

comm (which are communication-bound) scale nearly ideally. The increase in

comm time is negligible compared to that of QEq. As we mentioned before, in

a typical simulation, the QEq solver takes 10-15 iterations and therefore 30-45

communication operations in total per time-step, on average. While two thirds

of these communication operations are all-reduce operations, as is the case with

a dot product, the remaining one third is staged messaging operations related

to the matrix-vector multiplication. Its significant communication requirement

results in some performance degradation of QEq beyond 16 processes. Note

however that the optimizations we have described in Section 4.5 are critical and

that QEq performance degradation does not significantly impact the overall

efficiency of our code (78% efficiency at 3375 processing cores).
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Figure 9: Strong scaling: Total time per step as a function of increasing number of cores for
a fixed system size. Per-step timings for the six major PuReMD parts are also shown.

5.2. Strong Scaling Results

For strong scaling tests, we perform our experiments on the same water

system described in Section 5.1. To be able to work with large number of cores,

we have replicated that water system twice in each dimension, yielding a system

of 52320 atoms inside an 80× 80× 80 Å3 orthogonal simulation box.

Table 3: Strong scaling test results for 52320 atom bulk water system.

#cores atoms
core time per step QEq

total(%) eff.(%) throughput ( ns
day )

1 52320 7.776 22.9 100 0.003
4 13080 1.952 23.6 99 0.011
8 6540 1.119 23.1 86 0.019
16 3270 0.687 23.1 70 0.031
32 1635 0.381 23.6 63 0.057
64 817 0.213 23.5 57 0.101
128 408 0.136 27.9 44 0.159
256 204 0.086 31.4 35 0.251
512 102 0.055 30.9 27 0.393

Fig. 9 and Tab. 3 present results of our strong scaling tests. Parts of

PuReMD that do not require significant communication or redundant compu-
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tations, i.e. bonded and nonb parts, scale well with the increasing number of

cores. In nbrs part, besides generating the neighbors of local atoms, we need

to generate the neighbors falling inside the rbond cut-off for outer-shell atoms

as well. This is required for bond related computations in the bonded part, but

it suggests a significant increase in the overall ratio of redundant nbrs com-

putations to the total nbrs computations as the process sub-domains become

smaller. Consequently, we observe a slightly worse scaling behavior from nbrs

compared to bonded and nonb parts.

The init forces part is also affected by the same redundant computations

within the outer-shell because it is responsible for the computation of uncor-

rected bond orders for the outer-shell atoms. However, these redundant compu-

tations do not propogate to the bonded part because we truncate most redundant

bond related computations at the outer-shell after a process computes all un-

corrected bond orders that it is responsible for, as was explained in Section 4.3.

However, the init forces part scales worse than the nbrs part. This is because it

is susceptible to another form of redundancy – double computations during the

construction of the H matrix in order to avoid a communication step in QEq.

In fact, these redundancies make init forces the most expensive part with QEq,

as we scale to large number of processes.

As is the case with most parallel applications, communication bound parts

(comm and QEq) do not scale as well. Poor scalability of comm is not a major

concern, since ReaxFF is an expensive force field. In Fig. 9, it can be seen that

comm takes a very small share of the total time per time-step; even with 512

cores only about 5%. On the other hand, QEq is one of the most expensive

parts in PuReMD. Zonal methods introduced by Shaw et al. [28] have been

shown to reduce the communication bandwidth requirements of range limited

N-body simulations significantly. ReaxFF is a range-limited force field as well.

While the dynamic nature of bonds and bonded interactions prevent us from

directly adopting zonal methods for all communications, computation and com-

munication patterns in QEq are suited to adopting zonal methods exclusively

for the QEq part. We intend to include this optimization in a future release of
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PuReMD.

A more effective way of improving the scalability of QEq would be to reduce

the iteration count of its linear solver through an effective preconditioner. One

commonly used preconditioning technique is based on the incomplete LU fac-

torization of the coefficient matrix [22]. While ILU-based preconditioners are

effective in reducing the iteration counts of iterative solvers, their major draw-

back is the high computational cost associated with the factorization stage.

In our sequential version [15], we amortize the cost of ILUT factorization by

reusing the preconditioner over several time-steps. In a serial context, we have

observed that the performance of ILUT-based schemes are far superior to the

diagonally scaled schemes described in Section 4.5. These results suggest that

using ILUT-based preconditioners in QEq, it is possible improve the perfor-

mance and scalability of PuReMD significantly. Realising these improvements,

though, poses significant challenges. Scalability limitations of ILUT precondi-

tioners in a parallel context prevent their use on large machine configurations.

Our initial tests using the P-SPIKE algorithm [30] show promising results, both

in terms of solve time and scalability of QEq part.

5.3. Comparison with LAMMPS

In this section, we present the performance comparison of our code with the

only other publicly available parallel ReaxFF implementation, ReaxFF package

in LAMMPS. We repeat the same weak scaling and strong scaling tests described

above using the LAMMPS code and provide comparisons. Both codes have

been compiled using the the same compilers (Intel C/C++ compilers), compiler

flags (-O3 -funroll-loops -fstrict-aliasing), and MPI library (MVAPICH2) on the

Hera cluster. Neither code has been tuned to the specific architecture of the

machine. It is possible that the performance of these codes may be further

improved through platform-specific optimizations.

Fig. 10 shows the comparison of both codes under the weak scaling test.

On a single core, PuReMD is about five times faster than LAMMPS. However,

LAMMPS code shows a surprising drop in the per time-step running time while
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Figure 10: Comparison of PuReMD and LAMMPS codes under weak scaling. The left y-axis
shows the per time-step running times for both codes. The right y-axis is the average matrix-
vector multiplication and linear solver iteration counts per step. Since LAMMPS always does
a single matrix-vector multiplication per iteration, we show its iteration and matrix-vector
multiplication counts in a single curve.

going from 1 to 4 and then 8 cores. Despite the drop, PuReMD is still about

four times faster than LAMMPS. Taking the 16 cores runtime as basis, as we did

in Section 5.1, LAMMPS achieves a weak scaling efficiency which is very close

to that of PuReMD (76% vs 78%, respectively). The main reason behind the

increase in LAMMPS’s time per time-step is the increasing number of iterations

required by its charge equilibration solver as the system size increases. By

using a different mathematical formulation for solving the charge equilibration

problem and applying key optimizations described in Section 4.5, we are able

to maintain constant matrix-vector multiplication and PCG iteration counts at

a much lower level.

Fig. 11 shows the results of our strong scaling comparisons. We could not run

the 52320 bulk water simulation with LAMMPS code using fewer than 8 cores

due to memory limitations. At 8 cores, PuReMD is about three times faster

than LAMMPS, and we are able to maintain this ratio all the way through 512

cores.
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Figure 11: Comparison of PuReMD and LAMMPS codes under strong scaling. Gray lines
indicate the ideal scaling curves for both codes.

Finally, we would like to note that PuReMD has been designed and devel-

oped to be modular and extensible, like LAMMPS. Consequently, it is quite easy

to make improvements and modifications on it. Modifying the PuReMD code

to work with other bond-order potentials would primarily involve modifying the

force computation routines.

5.4. Memory Usage

Another important aspect of PuReMD is its small memory footprint and its

ability to adapt to the memory needs of the system to be simulated. We were

unable to measure the precise memory footprint of PuReMD on the Hera cluster.

However, our tests have shown that PuReMD is able to simulate a 296,960 atom

PETN system on a single processor using an estimated memory of 15GB. To

the best of our knowledge, PuReMD is the only ReaxFF implementation that

can simulate such large systems with great ease – i.e. without requiring any

tuning of compilation and runtime parameters.

It is important to note that in spite of the critical performance analysis

presented in this section, PuReMD achieves high parallel efficiency under typical

weak-scaling workloads (over 78% at over 3K processing codes) with a small
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memory footprint. It does so at excellent per-step per-particle simulation time

(which renders achieving this high parallel efficiency more difficult) and yields

perfect agreement with the ReaxFF model potentials. To this end, PuReMD

provides a unique simulation capability.

6. Concluding Remarks

In this paper, we have presented an efficient and scalable parallel implemen-

tation for ReaxFF in C using MPI. Our open-source implementation is shown

to be (i) 3-5 times faster compared to other implementations, (ii) has a signif-

icantly smaller memory footprint, and (iii) has been demonstrated to scale to

more than 3K computational cores under weak-scaling scenarios, yielding over

78% efficiency. Its modular and extensible design makes further improvements

and enhancements very easy.

PuReMD’s accuracy has been verified against the original ReaxFF code by

comparing the energy and forces due to every single interaction in the Reax

formulation under many diverse simulation scenarios. We have compared the net

forces on individual atoms and verified that any differences are within expected

numerical deviations. In addition to the systems used in this paper, PuReMD

has been used by other research groups to study such diverse systems as strain

relaxation in Si-Ge nanorods, water-silica systems under pressure, and Ti-silica

systems under impact stress.
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