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ABSTRACT
As MEMS technology develops it is becoming better un-

derstood that MEMS designers must account for the large un-
certainties characteristic of the relevant manufacturing pro-
cesses. Uncertainty quantification tasks the designer with eval-
uating many different possible outcomes from the manufactur-
ing process which creates a demand for models that are accu-
rate and comprehensive, yet fast to evaluate. This work presents
a comprehensive reduced-order model of electrostatically actu-
ated switches incorporating a range of effects that are typically
included only in FE modeling codes. Specifically, the model ac-
counts for variable electrode geometry, stretching of centerline
or large displacement effects, fringing field, squeeze film and
rarefied gas damping, and allows for elastic contact with the di-
electric substrate. Individual compact models for each of these
effects are taken from literature and included in the model for the
system. The dielectric substrate is modeled as an elastic founda-
tion. The resulting partial differential equation for the switch
modeled as a beam is discritized via a Galerkin method into or-
dinary differential equations for modal amplitudes. The Galerkin
method uses the linear un-damped mode shapes of the beam to
approximate the solution. Both cantilever and fixed-fixed type
switches are analyzed. Static equilibrium solutions as a function
of the applied voltage are developed along with their stability.
Static pull-in voltages, first time of switch closure, and voltage
for lift-off are studied with the model. To capture the contact
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dynamics, the contact condition is evaluated with the substrate
divided into a large number of elements and the contact force is
projected on to the beam basis functions. In the case of cantilever
geometry and slow voltage variations, three stable regimes of
contact configuration and hysteresis between them are demon-
strated.

NOMENCLATURE
A Area of beam section
b Beam width
E Young’s modulus of beam
E f Young’s modulus of dielectric film
g0 Equivalent Initial gap (tair + td/εr)
g Instantaneous gap (g0−w)
h Beam thickness
I 2nd moment of inertia
L Beam Length
N Residual tension
tair Air layer thickness
td Dielectric thickness
V Voltage
w Beam displacement
λ Gas mean free path
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INTRODUCTION
MEMS have had a large impact on industry as well as

academia. Their marriage of different disciplines into unique de-
vices has resulted in some exceptional performances as well as
much exciting research potential. In the RF community, although
it is by no means the only actuation scheme, electrostatic actu-
ation has appeared as one of the most common means of actua-
tions due to its relative simplicity in implementation. The force
created by the attraction of opposite charges is well known but in-
frequently felt at the macro-scale, yet its length-scale dependence
is such that it can be very effective at the micro-scale. The RF
MEMS community has been very creative with the huge range of
device designs [1–3], yet the simple geometries of a fixed-fixed
beam and a cantilever beam have remained popular, again due to
their relative simplicity in implementation. As such, the electro-
statically actuated micro beam has become a topic frequented by
researchers and covered by many works [4,5] including this one.

In the case of the capacitive switch design the beam acts
as flexible electrode of a capacitor. DC bias across the system
causes deflection of the beam, a thinner capacitor, an increased
capacitance, and ultimately a collapse of the beam onto the other
electrode, which must be protected by a dielectric insulator to
prevent a short circuit. This collapse is called the pull-in phe-
nomenon, it occurs when the linear elastic restoring force of the
beam can no longer resist the 1/g2 electrostatic force. The volt-
age when this phenomenon occurs is the pull-in voltage and pre-
dicting it has been of enormous interest as some devices, such
as switches must function above this voltage and others such as
resonators, mixers, microphones etc. must not reach this volt-
age [6]. In addition to this unique instability there are a variety
of other phenomena that have been the subject of much research.

Dynamic pull-in takes on two definitions in the literature.
Nayfeh et al. [7] uses dynamic pull-in to refer to pull-in by a res-
onance phenomenon where the beam is oscillated via a mixed-
signal AC+DC voltage. The second meaning, which will be re-
ferred to as ’DC dynamic pull-in’, is the effect of the beam being
pulled-in by a DC voltage below the pull-in voltage predicted by
static-equilibrium analysis. This occurs due to dynamic effects
when an actuation voltage is increased quickly. This work will
use ’DC dynamic pull-in’ to mean the latter mode of operation.

The modeling of these electrostatically actuated devices
started with the most basic lumped mass-spring model. This
model can be appropriate for some devices that physically re-
semble it, but is infrequently used for beams without modifica-
tion. As researchers realized that a beam system often could not
be equated well to a one degree of freedom model, they resorted
to continuous domain models and FEM codes. FEM codes can
produce very accurate results but are more computationally ex-
pensive. Continuous domain models were simulated using finite
difference methods as well as reduced-order methods. McCarthy
et al. [8] used a central difference scheme to simulate a beam
with point contacts. Younis et al. [9] produced a reduced-order

model for electrostatically actuated micro-beams and the present
work heavily relies on their developments.

In the literature on MEMS, some works are focused on im-
proving general models for these devices whereas others focused
on specifics. A frequent modeling assumption in analytical mod-
els of MEMS is the parallel-plate approximation. This assump-
tion does not consider the fringing electric field present at the
edges of two capacitor plates. Batra et al. [10] and others [11]
have developed more accurate models than the parallel plate as-
sumption. Batra et al. [10] fit a compact model to extensive FEM
simulation data arriving at a fringing field model that accounted
for finite beam width as well as thickness. Accounting for fring-
ing field lowers predictions of the pull-in voltage a few percent
depending on the width of the beam. Another frequent modeling
assumption is that of linear viscous damping (or quality factor),
which while greatly simplifying and sometimes even being ap-
plicable is not entirely accurate. The squeezing nature of the
movement of the beam results in high damping nearer contact.
Similarly to the fringing field compact models, researchers have
used expiermental and simluation data to create compact expres-
sions for damping coefficients [12, 13].

The goal of this work is to create a modeling framework
that is comprehensive enough to incorporate many of the multi-
physics phenomena present in order to accurately predict the
behaviors discussed previously; pull-in, DC-dynamic pull-in, bi
and tri-stable states etc, while taking advantage of the work that
has been done to improve the details of MEMS modeling, all
without having to resort to costly FEM packages. The relatively
fast evaluation of a reduced-order model is enormously useful to
iterate designs, perform optimization and uncertainty quantifica-
tion, all of which require large numbers of model runs.

This paper is organized into three sections. The modeling
section goes through in detail the construction and solution of
a reduced-order model. Modeling subsections describe details
for the incorporation of other compact models into a Galerkin
method framework. The results section uses the model formula-
tion in a variety of ways to predict some of the behavior described
above. Static equilibrium and pull-in results are described for
fixed-fixed and cantilever beams. Bi-stable and Tri-stable states
for cantilever beams are demonstrated. Dynamic solutions are
presented for DC-dynamic pull-in calculations. Results of the
model are compared to known literature. The conclusions sec-
tion summarizes the work

MODELING OF THE MEMS SWITCH
Beam equation: The modeling process begins with the

equation of motion for a fixed-fixed beam. Both fixed-fixed and
cantilever beams are considered here and Fig. 1 shows the sys-
tem(s) under consideration. As the cantilever case is a simplifi-
cation of the fixed-fixed case, the model equations for the fixed-
fixed are shown and the simplification to the cantilever case will
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FIGURE 1. BEAM MODEL OF AN ELECTROSTATICALLY ACTU-
ATED SWITCH.

be described later. The equation of motion for transverse vi-
bration of a fixed-fixed beam which carriers some residual axial
load, and undergoes stretching is as follows [9]:

EI
∂ 4w
∂x4 +ρbh

∂ 2w
∂ t2 +Fdamp =[EA

2L

∫ L

0

(
∂w
∂x

)2
dx+ N̂

]
∂ 2w
∂x2 +Felec +Fcontact

(1)

where the electrostatic, the damping and the contact forces are
included. The terms in (1) are, in order: restorative bending
force, inertia, damping, stretching plus residual force, electro-
static force and contact force. Recognize that the stretching term
is the binomial approximation for the change in arclength. Mod-
els for the damping, electrostatics, and contact are considered
next.

Damping model: The damping due to the squeezing of
the gas between the substrate and the beam can be considerably
more than if the beam were moving in an unconfined medium.
This has been extensively studied [12–15]. The model by Guo
and Alexeenko [12] is used here. They have modeled the squeeze
film effect as a linear viscous damping where the coefficient of
damping varies with the beam displacement. Thus,

Fdamp = c f (w)ẇ. (2)

The damping coefficient is given as:

c f =
10.39( b

tair−w )
3.1

1+1.374( b
tair−w )

1.825 λ

b
0.966 t. (3)

Note that the model is a velocity proportional damping model
where the damping coefficient depends on the gap-separation.
Thus, the damping force is really a nonlinear function of beam
displacement and velocity. For now the notation is simply c f (w).

Electrostatics Force Model: The force between the
electrode and the beam is generally modeled via the model of
a parallel plate capacitor. A parallel plate capacitor has the well
known capacitance relation

C =
ε0A
g

. (4)

To find the force, the energy stored in a parallel plate capacitor is
differentiated with respect to the separation between the plates.
The energy is

E =
1
2

CV 2. (5)

Differentiating this with respect to g yields the force between the
plates of a parallel plate capacitor,

F =
ε0AV 2

2g2 (6)

where the force is attractive. The accuracy of the parallel plate
assumption is directly related to width of the beam. A wider
beam will better approximate a parallel plate. A narrower beam
will have a significant portion of its electric field emanating from
its sides and top of the beam, making a parallel plate model in-
appropriate. Incorporating a model for this fringing field makes
this formulation more accurate. Batra et al. [10] modeled the ca-
pacitance of a narrow microbeam with a modifying factor to the
basic parallel plate model. This was a fit to results derived from
finite element simulations of the electrostatics problem. Thus,

C =
ε0A
g

P(w) (7)

where

P(w) = 1−0.36
1
b
(g0−w)+

(
0.85

1
b0.76 +2.5

h0.24

b

)
(g0−w)0.76.

(8)
The force is found by differentiating in the same manner as
above, which yields the force

Felec =
ε0bV 2

2(g0−w)2 (1+0.24A0(g0−w)0.76) (9)

where

A0 =
(

0.85
1

b0.76 +2.5
h0.24

b

)
. (10)
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Impact Model: A soft contact model is employed here.
The impacted substrate acts as a stiff, distributed spring and thus
the contact term in the equation of motion is defined as:

Fcontact =−
E f b
td

(w− tair)(w≥ tair). (11)

It should be noted that in this analysis, g0 is the equivalent initial
gap and that impact occurs before w = g0, (g0 = tair + td/εr).
Thus impact will occur before the singularity in the electrostatic
force. Also, as we have defined the attraction of the beam to the
electrode as the positive direction, hence the minus sign in the
contact force expression.

The Equation of Motion
Combining (9), (11) and (2) into (1) yields the beam’s equa-

tion of motion:

EI
∂ 4w
∂x4 +ρbh

∂ 2w
∂ t2 + c f (w)

∂w
∂ t

=
[EA

2L

∫ L

0

(
∂w
∂x

)2
dx+ N̂

]
∂ 2w
∂x2

+
εbv2(t)

2(g0−w)2 P(w)+
E f b
td

(w− tair)(w≥ tair).

(12)

Note that the explicit forms for c f (w) and P(w) have been left
out, this will be addressed later.

Non-dimensionization: The non-dimensional vari-
ables:

x̂ =
x
L

ŵ =
w
g

t̂ =
t
T

(13)

serve to make the equations more manageable. Substituting the
non-dimensionalized, length, displacement, and time yields the
non-dimensionalized equation of motion for the beam. This
equation is:

∂ 4ŵ
∂ x̂4 +

∂ 2ŵ
∂ x̂2 + c

∂ ŵ
∂ t̂

= [α1Γ(ŵ, ŵ)+ N̂]
∂ 2ŵ
∂x2

+
α2v2(t)
(1− ŵ)2 (1+A1(1−w)0.76)+α3(ŵ≥

go− tair

g0
)(ŵ− go− tair

g0
)

(14)

where

α1 =6
(d

h

)2
c =

ĉ(w)L4

EIT
N̂ =

NL2

EI
A1 = 0.24A0g0.76

0

α2 =
6ε0L2

Eh3d3 α3 =
E f L4b
tdEI

T =

√
ρbhL4

EI
(15)

and the function Γ is expressed

Γ( f1(x, t), f2(x, t)) =
∫ 1

0

∂ f1

∂x
∂ f2

∂x
dx. (16)

Hats are dropped from this point forward for convenience.

Finite Electrode Width Case: Most MEMS beams do
not have actuation electrodes that span to whole length of the
beam. The model is equation (12) is written as if this is the case.
Step functions to indicate the start and end of the actuation elec-
trode along the beam in the x-direction serve this purpose. The
new non-dimensionalized equation of motion is thus:

∂ 4w
∂x4 +

∂ 2w
∂x2 + c

∂w
∂ t

= [α1Γ(w,w)+N]
∂ 2w
∂x2

+
α2v2(t)
(1−w)2 (1+A1(1−w)0.76)(H(x− x1)−H(x− x2))

+α3(w≥
go− tair

g0
)(w− go− tair

g0
)

(17)

where x1 is the fraction of the beam before the electrode starts,
and x2 is the fraction of the beam before the electrode ends. For
example, if the electrode occupies the center third of the beam
then x1 = 1/3 and x2 = 2/3. While the fringing field that occurs
between the sides of the beam and the top plate of the actua-
tion electrode have been modeled there is another fringing field
between the sides of the electrode and the bottom plate of the
beam. By using step function to cut off the electrostatic force at
the ends of the electrode, this fringing field has not been taken
into account. For most switch geometries the fringing field from
beam sides to electrode top occurs over a greater length than that
between the electrode sides and beam bottom and as such is a
more significant effect.

SOLUTION METHODOLOGY
In order to solve the beam model (17), it is assumed that

the solution at any given time is a linear combination of the lin-
ear modeshapes of the undamped, undeflected microbeam. The
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solution then takes the form

w(x, t) =
M

∑
i=1

ui(t)φi(x) (18)

where φi(x) is the ith linear undamped mode shape of the beam
with appropriate boundary conditions and ui are time varying co-
efficients. The mode shapes are the solution to the equation:

φ
iv
i = Nφ

′′
i +ω

2
i φi (19)

and the boundary conditions (for a fixed-fixed beam)

φi(0) = 0 φi(1) = 0 φ
′
i (0) = 0 φ

′
i (1) = 0. (20)

The modeshapes are also normalized to obey the orthogonality
property

∫ 1

0
φiφ jdx = δi j. (21)

There exist closed-form expressions for the modal frequency
equations and modeshapes in literature. The formulas for a can-
tilever beam can be found in Rao [16], and many other sources.
The closed form expressions for a fixed-fixed beam under axial
tension can be found in Shaker [17].

Galerkin Method
To solve the beam model using modal superposition we sub-

stitute the expansion (18) into equation (17), multiply through by
(1−w)2 to get rid of rational terms, multiply by φn and finally
use the orthogonality property by integrating everything from 0
to 1. However a difficulty appears with c(w) and P(w); they are
not in integer powers of w and there is not a good way to express
a fractional power of a series. This is rectified by starting over
and expressing c(w) and P(w) as Taylor Polynomials.

Taylor Expansion of Fringing Field Model: The di-
mensional electrostatic force (9) can be non-dimensionalized to

Felec =
ε0bV 2

2g2
0(1−w)2 (1+A1(1−w)0.76) (22)

where:

A1 = .204
(g0

b

)0.76
+ .6

h.24g0.76
0

b
. (23)

The 3rd order Taylor expansion of this is

Felec ≈
ε0bV 2

2g2
0(1−w)2 (1+A1−0.76A1w−

0.0912A1w2−0.0377A1w3)

(24)

The form of equation (24) is now suitable for the Galerkin
method. Note that the error between Felec in (22) and its ap-
proximation (24) is less than 1.5% over the range of 0 ≤ w ≤ 1
for A1 = .1. A similar method is used to express the damping
coefficient.

Taylor Expansion of the Damping Coefficient: The
damping model of Guo and Aleexenko [12] was included in a
similar fashion. Starting with equation (3) and assigning some
factors the damping model becomes

c f =
B1g−3.1

1+B2g−1.825 (25)

where B1 = 10.396b3.1t and B2 = 1.374b1.825(λ

b )
0.966. Manipu-

lating g results in

c f = g−2 B1g.725

B2 +g1.825 (26)

Some additional alebraic manipulation results in

c f = (1−w)−2 B′1(1−w).725

B′3(1−w)1.825 +B′2
(27)

where the new parameters are:

B′1 =10.39b3.1tg−1.275
0

B′2 =1.374b1.825
(

λ

b

)0.966

B′3 =g1.825
0 .

(28)

The first (1−w)−2 in equation (27) will be eliminated when the
whole equation of motion is multiplied by (1−w)2. The re-
minder of the damping term we can expand in a Taylor series
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to give:

c f ≈(1−w)−2

(( B′1
B′2 +B′3

)
+

(−0.725B′1(B
′
2−1.5172B′3)

(B′2 +B′3)
2

)
w+

(−0.0997B′1(B
′2
2 +22.8245B′2B′3−11.5862B2

3)

(B′2 +B′3)
3

)
w2

)
.

(29)

To ultimately express this model in a compact form some addi-
tional factors were assigned:

C1 =
( B′1

B′2 +B′3

)
C2 =

(−0.725B′1(B
′
2−1.5172B′3)

(B′2 +B′3)
2

)
C3 =

(−0.0997B′1(B
′2
2 +22.8245B′2B′3−11.5862B2

3)

(B′2 +B′3)
3

)
.

(30)

Ultimately the desired polynomial form

c f ≈ (1−w)−2(C1 +C2w+C3w2) (31)

is obtained for the damping coefficient. The factor (1−w)2 in
(31) will be eliminated when following the solution procedure
detailed above.

Solution Procedure
First the modified damping form in equation (31) and fring-

ing field model in equation (24) are substituted back into equa-
tion (17). Now multiplying by (1−w)2 leaves only integer pow-
ers of the displacement w and thus the modal expansion (18) can
be substituted. After these steps are taken, the resulting equation
is finally broken down into a set of ODEs in time for each modal
amplitude ui. This is done by multiplying by φn and integrating
from zero to one. This last step exploits (21) and yields the set
of ODEs

ün−2
M

∑
i, j=1

üiu j

∫ 1

0
φiφ jφndx

+
M

∑
i, j,k=1

üiu juk

∫ 1

0
φiφ jφkφndx =

−C1u̇n−ω
2
n un

−C2

M

∑
i, j=1

u̇iu j

∫ 1

0
φiφ jφndx

−C3

M

∑
i, j,k=1

u̇iu juk

∫ 1

0
φiφ jφkφndx

+2
M

∑
i, j=1

uiu jω
2
i

∫ 1

0
φiφ jφndx

−
M

∑
i, j,k=1

uiu jukω
2
i

∫ 1

0
φiφ jφkφndx

+α1

M

∑
i, j,k=1

uiu jukΓ(φi,φ j)
∫ 1

0
φ
′′
k φndx

−2α1

M

∑
i, j,k,l=1

uiu jukulΓ(φi,φ j)
∫ 1

0
φ
′′
k φlφndx

+α1

M

∑
i, j,k,l,m=1

uiu jukulumΓ(φi,φ j)
∫ 1

0
φ
′′
k φlφmφndx

+α2v2(t)(A1 +1))
∫ x2

x1

φndx

+α2v2(t)(−0.76A1)
M

∑
i=1

ui

∫ x2

x1

φiφndx

+α2v2(t)(−0.0912A1)
M

∑
i, j=1

uiu j

∫ x2

x1

φiφ jφndx

+α2v2(t)(−0.0377A1)
M

∑
i, j,k=1

uiu juk

∫ x2

x1

φiφ jφkφndx

+
∫ 1

0
−k(w− tair)(w≥ tair)

(
1−w

)2
φndx,

(32)

for n=1,2,...,M.
There are some things worth pointing out in equations (32). First,
note that the set of equations is O(M6) (M equations containing
M5 terms) meaning that computational cost increases dramati-
cally with the number of modes. Second, note the appearance of
x1 and x2 in the integration limits of the voltage terms; this is a
natural simplification of integrating over step functions. Finally,
note that the modal expansion was not applied to the impact term.
This arises from the conditional coefficient (w≥ tair) which can
not be easily expressed in terms of modeshapes. Checking for
contact requires reassembling w via (18) at every time step and
checking for interference with the dielectric.

Cantilever Case: A Cantilever beam can be modeled
with the same methodology. To model a cantilever the pre-
tension N and stretching term coefficient α1 are set to zero and
the appropriate boundary conditions are used for finding the
mode shapesφn . It should be noted that the resulting simplifi-
cation to (32) is the loss of the highest order terms. These terms
are due to the stretching non-linearity and the result is that the
cantilever case is O(M4) (M equations containing M3 terms) and
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generally much faster to evaluate than the fixed-fixed case.

EQUILIBRIUM AND STATIC PULL-IN PREDICTIONS
Static solutions to equations (32) are explored first. The

method used to find the static solutions is an enforced displace-
ment scheme. The static solutions are found by eliminating the
dynamic terms in (32) and using the remaining expressions as
measures of error. An addition error measure is obtained from
the distance from a desired displacement at a given point along
the beam; say at the mid-point for example. Thus, (M+1) equa-
tions are to be satisfied or (M + 1) errors must be zero, that is,
when a trial solution of M modal amplitudes and a voltage is
plugged into the error measures and the errors are all zero, the
trial solution is a static solution. Starting from a non-static guess
solution, we can obtain the partial derivatives of the error mea-
sures with respect to each modal amplitude and the voltage. Us-
ing a Jacobian matrix constructed from these partial derivatives,
an iterative Newton-Raphson scheme updates the guess solution
until all the error measures are sufficiently small. By slowly step-
ping through the desired displacements from zero up to contact,
the static solution curves are obtained. It should be noted that
the solutions found by this technique are unique expect in cases
of buckled modes. For a fixed-fixed beam the displacement was
enforced at the midpoint with the equilibrium voltage solved for
from zero displacement up to contact. For a cantilever beam it is
informative to enforce displacements at the tip as well as other
points on the beam. Enforcing displacements at the midpoint of
the cantilevers shows some post-contact phenomena including
tri-stable configurations, i.e. three distinct configurations of the
beam for a given voltage.

The results for a prototypical cantilever beam; L = 350µ ,
b = 40µ , h = 2µ , d = 2µ , E = 169GPa, ν = .06, x1 = 0,x2 = 0
are shown in Fig. 2 for up to 10 modes. The highest volt-
age on the plot, the locally vertical point of the curve where it
changes from the stable lower branch ( dw

dx ≥ 0) to the unstable
upper branch( dw

dx < 0) is dubbed the static pull-in voltage. For
these dimensions, using 5-10 modes, the static pull in voltage is
predicted at 4.705Volts. Generally, as the number of modes in-
creases, the model converges very quickly for low displacements
and slower for high displacements. Three modes are often suf-
ficient for predicting the pull-in voltage, while predicting the re-
lease voltage requires at least 5 modes. Thin dielectrics, unusual
electrode set-ups and post-contact predictions take a significant
number of modes.

The static displacement for a fixed-fixed beam will appear
qualitatively similar to the cantilever data in Fig. 2. The fixed-
fixed beam of otherwise equivalent dimensions will obviously
have a much higher pull-in voltage, otherwise the graph will ap-
pear similar. The maximum stable displacement, however, may
be larger as the stretching in a fixed-fixed beam may result in
stability closer to the electrode. There is however addition inter-

FIGURE 2. CONVERGENCE OF STATIC SOLUTIONS FOR A CAN-
TILEVER BEAM.

esting behavior in the cantilever system that is not revealed by
Fig. 2.

Enforcing displacements at the midpoint of a cantilever
beam reveals three stable states, before pull-in, pinned at the tip,
and flat. In line with [18], there is hysteresis between the three
states and they can be seen in the transitions between the stable
branches ( dw

dx ≥ 0) of Fig. 3 which displays the relationship be-
tween the static displacement of the midpoint of a cantilever and
the voltage. The arc from zero displacement up to w = 0.3 cor-
responds to the pre-contact deflection of the beam. At w = 0.3
the tip of the cantilever is in contact, hence the low voltage. The
next arc in the curve corresponds to the transition from pinned-
tip contact to flat contact. The convergence on this section of
the curve is much slower as parts of the beam are in contact. In
the last section of the curve, from w = .55 to w = 1 the voltage
increases sharply until the midpoint of the beam in brought into
contact, again the convergence is slow due to much of the beam
being in contact. Excluding dynamic effects, slowly increasing
the voltage would cause the beam to transition to tip-contact at
4.7 volts,and flat contact at approximately 6 volts. Lowering the
voltage from this point would cause the beam to transition from
flat contact to pinned contact at approximately 4 volts and even-
tually release at approximately 2 volts.

When calculating the mode shapes of the Euler-Bernoulli
beam in MATLAB a subtle problem arises in 11 or 12th mode
shapes. Even when using double-precision variables enormous
rounding errors appear and the conventional formulas don’t yield
usable results beyond the 11th mode. This is due to cosh()
and sinh() terms which are very large and nearly equal. When
these terms are subtracted nearly all the significant digits are
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FIGURE 3. BEAM MIDPOINT STATIC SOLUTIONS FOR A CAN-
TILEVER BEAM.

FIGURE 4. CONVERGENCE OF STATIC SOLUTIONS (x2 = 0.55) FOR
A CANTILEVER.

lost. Gonçalves et al. [19] solved this with some clever algebraic
manipulations and using his technique higher-order modes than
10 could be used. Although the solutions with greater than 10
modes have not been plotted they have been shown to converge.

Another interesting case is the analysis of an electrode de-
sign to reduce or eliminate the static pull-in instability. The
concept is that by shortening the electrode such that x1 = 0 and
x2≈ 0.5 the beam’s tip will make contact before the beam section
that is actually above the electrode gets too close. Ideally, this
eliminates the hysteresis and pull-in effects found in the nominal
case. A test case with the same parameters (with the exception
that x2 = 0.55) as used previously is shown in Fig. 4. Again
the convergence is slow near contact, and while not quantita-
tively converged, the graph shows the expected behavior quite

TABLE 1. Pull-in voltage comparisons for Cantilevers.

Parameters: E=77GPa, ν = .33, h=3µm, g0=1µm

Variables Case 1 Case 2 Case 3

L(µm) 300 500 300

b(µm) 50 50 0.5

VPI [21] 2.33 0.84 1.33

VPI [22] 2.27 0.8180 1.23

VPI CW FEA 2.25 0.75 1.20

VPI Compact model [20] 2.27 0.8188 1.21

VPI This model 2.258 0.8131 1.207

well. The one-to-one relationship between static tip-deflection
and voltage means that there are no unstable branches and no
hysteresis when actuating the switch, it releases at the same volt-
age it pulls-in.

In order to verify that the fully converged model was accu-
rate, prediction of pull-in voltages were compared against some
available experiments and other published models. The results in
Table 1 are from [20] with results from this work included. Ex-
perimental results are taken from Pamidighantam et al. [21] and
Osterberg [22].

DYNAMIC SOLUTIONS
Dynamic solutions to equations (32) are found by direct time

integration in MATLAB. The ODE23s routine was used to per-
form the integration as the equations become somewhat stiff near
and after contact. It is well understood that MEMS beams can
pull-in at voltages under their static pull-in voltage due to dy-
namic effects. A beam can be given enough momentum by a
lower voltage to carry it pasts its static equilibrium solution to
pull-in. The lower limit of voltage when pull-in occurs due to
this dynamic effect is called the DC-dynamic pull-in. This is typ-
ically around 8% lower than the static pull-in voltage [23]. This
is found with this model by a bi-section search method. Apply-
ing a step input voltage (or a given rise time) much lower than
the static pull-in voltage where the beam does not pull-in and a
much higher voltage that causes pull-in creates a window of volt-
ages that contains the DC-dynamic pull-in voltage. The bisection
search proceeds to divide the search interval by applying the volt-
age in the middle of the window, integrating in time under these
conditions, and observing whether or not the beam pulls-in, and
appropriately choosing a half-window to call the new window
and dividing again. The process is carried out until the window is
of some acceptably small width, such as 10mV. The process is il-
lustrated in Fig. 5 where the bisection search history is shown for
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FIGURE 5. CONVERGENCE OF BISECTION SEARCH FOR EVALU-
ATING THE DYNAMIC PULL-IN OF A FIXED-FIXED BEAM.

a fixed-fixed beam. Parameters in Fig. 5 are L = 350µ , b = 40µ ,
h = 2µ , d = 2µ , E = 169GPa,ν = 0, x1 = 0.2, x2 = 0.8, λ

b = 1
and M = 5. For these parameters, the DC-dynamic pull-in volt-
age is 30.47 volts. Comparing this to the predicted static pull-in
voltage, 33.33 volts, it is 8.6% lower, as expected. In Fig. 5 the
frequency of the oscillatory response can be seen to decrease as
the actuation voltage increases. This is due to the softening effect
of the electrostatic force. When α1 is large it is possible to see
an increase in frequency followed by a decrease. In general the
closing time becomes large as the DC-dynamic pull-in voltage
is approached. The DC-dynamic pull-in voltage will drive the
beam to near-rest on the unstable branch with minute differences
in voltage determining whether the beam oscillates or impacts.
This near-rest effect is significant when within roughly 10mV of
the true DC-dynamic pull-in voltage. It should also be said that
computing the DC-dynamic pull-in voltage to this fine accuracy
is of little help to the designer or engineer as other modeling,
manufacturing or experimental uncertainties will dominate.

The DC-dynamic pull-in calculations can be done entirely
without contact dynamics. As mentioned previously, the model
converges slower near and post contact. Although it is difficult
to ensure that the contact dynamics are being calculated accu-
rately it is possible to get a good qualitative understanding of
the contact behavior. An example of bouncing of a fixed-fixed
beam during actuation is given in Fig. 6. The parameters are
thoose used in figure 5 and the acutuation voltage is a step volt-
age slightly above the dynamic pull-in voltage. The line colors
and thicknesses in the plot are only for visual aid. Each snapshot
is roughly equally spaced in time.

FIGURE 6. SNAP SHOTS OF A FIXED-FIXED BEAM BOUNCING
AGAINST THE SUBSTRATE.

CONCLUSIONS
A comprehensive model was effective in predicting the dif-

ferent quantitative and qualitative behaviors of beam-type elec-
trostatically actuated switches. A model that quickly predicts the
behavior of a MEMS beam under a variety of conditions will
prove valuable in tackling looming problems in the MEMS com-
munity which require many model evaluations, such as for un-
certainty quantification. The model does have some shortcom-
ings, the worst of which is the slow convergence near contact
which occurs both near and during contact. The ODEs in the
reduced-order model (32) are very complicated and beyond a cer-
tain number of modes any computational benefits may be lost.
Then it would be advantageous to switch to a finite difference
scheme. The damping model is accurate but was developed only
with small oscillations in mind and was not designed for switches
operating over a large vertical displacement. Near contact, the
model is extrapolating from the damping model rather than in-
terpolating. Perhaps the biggest effect not included in this model
is the lack of any accounting for imperfect beam anchors or pre-
distortion of the beam itself. However, the model is set-up in
such a way that it is not difficult to incorporate such effects. As
the model only depends on mode shapes and frequencies, im-
perfect anchors could be simulated in an FEM package to find
equivalent beam end-conditions and these could be used to ex-
tract the appropriate mode shapes and frequencies to be inserted
into the model. It may be possible to account for pre-distorted
beams, such as arches, in a similar way. The model would also
be well served by having more modeshapes beyond 11 or 12 to
work with. Allowing the use of enough modes to accurately sim-
ulate contact would be valuable. The accurate calculation of con-
tact stresses might lead to a computationally inexpensive damage
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model as well. In the end the strength of this framework is its
flexibility.
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