Multiscale modeling of plastic deformation
Abigail Hunter(1), Hojin Kim(1), Dong Wook Lee(1), Steve Milanoski(1), Marisol Koslowski(1), Alejandro Strachan(1), Deborah Sulsky(2)

(1) Purdue University (2) University of New Mexico

Atomistics: properties of individual defects

Generalized stacking fault energy

\[E^{\text{SSF}} = \frac{1}{2} \int \left(\sum_{\alpha} \sin^2(n_{\alpha} \xi(x,y)) \right) d^2x \]

Energy required to rigidly slide a block of material (\(\gamma \) surface or generalized stacking fault energy) Parameter A: unstable stacking fault (USF) energy

Dislocation core energies

\[E^{\text{prod}} = \frac{1}{2} \int \sum_{\alpha} \frac{H(\alpha, x) \partial(\xi(x,y))}{\partial x} \frac{\partial(\xi(x,y))}{\partial d} d^3x \]

Tensor \(H \) from dislocation core energies (\(E_C \))

Phase-Field MicroMechanics

Plastic deformation gradient

\[\gamma(x) = \frac{1}{2} \sum_{\alpha} \xi(x, y) = \alpha \theta(x, y) \]

Time evolution follows Ginsburg-Landau equation

\[\frac{\partial \xi(x,y)}{\partial t} = -\frac{\partial E}{\partial \xi(x,y)} \]

Total energy

\[E = E^{\text{eff}} + E^{\text{SSF}} \]

From atomic simulations of single crystal Ni

\[E^{\text{eff}} = \frac{1}{2} \sum_{\alpha} \left(\frac{\partial^2 E}{\partial \xi^2} \right) \left(\frac{\partial \xi}{\partial \theta} \right)^2 \]

From simulations: Gamma surface

\[E^{\text{eff}} = \frac{1}{2} \sum_{\alpha} \left(\frac{\partial^2 E}{\partial \xi^2} \right) \left(\frac{\partial \xi}{\partial \theta} \right)^2 \]

From simulations: Core energy

\[E^{\text{eff}} = \frac{1}{2} \sum_{\alpha} \left(\frac{\partial^2 E}{\partial \xi^2} \right) \left(\frac{\partial \xi}{\partial \theta} \right)^2 \]

To Continuum

Strain hardening

\[\sigma_{yy} = \sigma_{0}(t, \theta) + \sigma_{y}(t, \theta, \rho) \]

- Grain size effects
- Deviation of the average grain size affects hardening and Bauschinger effect.

Plasticity occurs when effective stress is above yield close up view of effective plastic strain

\[\dot{\gamma} = h(\rho) \dot{\rho} \]

\[\rho = \rho(\dot{\epsilon}, \rho_0, \rho_{\text{sat}}) \]

\[\rho(\dot{\epsilon}, \theta, \tau) = c \frac{\rho_{\text{sat}}}{\sqrt{1 - \frac{1}{2} (1 - \frac{1}{2})^2 + \rho_0}} \]

\[h(\rho) = \alpha b \sqrt{\rho} \]

MPM

\[\rho \frac{d\dot{\epsilon}}{dt} = \dot{\epsilon}^{\text{int}} + \dot{\epsilon}^{\text{ext}} \]

\[\dot{\epsilon}^{\text{int}} = -\nabla \cdot \sigma \]

\[\sigma = \sigma_0 \left(\epsilon - \epsilon^p \right) \]

Elastic moduli \(\tilde{C} \) from MD for single crystal plus homogenization to account for texture in the device microstructure

Plasticity determined from von Mises model

\[E^{\text{VM}} < \sigma \]

defines elastic region

\[E^{\text{VM}} = \sigma \]

plastic response

\[\sigma^{\text{VM}} = \frac{1}{2} \sigma : \sigma^{\text{VM}} \]

In the elastic regime, the plastic strain rate is zero, \(\dot{\epsilon}^p = 0 \)

In the plastic regime, the plastic strains are determined from the above with

\[\dot{\lambda} \geq 0 \]

\[E^{\text{VM}} < \lambda \dot{E}^{\text{VM}} = 0 \]

The yield stress \(\sigma_y \) is determined from PFMM

Ni membrane is 3µm thick and deforms 3µm to open the switch (Half of the membrane is modeled with symmetry on the left)