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» Surface Degradation

Equation of Motion:
s Caused by impact velocity
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RF-MEMS Capacitive Switch Multiple Reliability
Challenges in RF-MEMS

¢ Energy dissipation at the surface

*»*Resistive Braking
s+ Capacitive Braking

Soft Landing

» Technique to reduce surface degradation
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» Proposed Techniques

Dynamics of the Switch
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Fig. (b):Total energy (sum of electrostatic potential and spring potential energy) plotted as a
function of gap (y). Below pull-in (blue curve), potential energy has a minimum (point P,) and
electrode M, stabilizes there. Above pull-in (red curve), potential energy does not have any
minimum and therefore electrode M, is pulled down.
Fig.(c) Displacement (y) and velocity (v) as a function of time (t) during pull-in. Velocity
Increases rapidly just before hitting the dielectric. M, hits the dielectric with v;., ... and that
damages the surface of the dielectric due to this energy dissipation (Eg=1/2mv? ..,)

Soft Landing: Strategies
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»Waveform shaping: modify input voltage V dynamically

»Resistive Braking: Modify V. dynamically

“*Energy is dissipated in a remote resistance
*»*Does not affect pull-in voltage and pull-in time

» Capacitive Braking: Modify A_(y) Dynamically

“*Patterning of electrode M,/M, or dielectric

“*Does not affect pull-in voltage as pull-in occurs at 2/3y,and all the field lines from the
Individual elements merge making it look like a flat plate electrically

*»*Does not affect pull-in time

Resistive Braking
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s Remote resistance causes dramatic reduction in the impact velocity

+» Remote resistance below 1MQ does not change the pull-in time significantly

Energy Dissipation during Resistive Braking
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E.: Total energy supplied
by the voltage source.

Eq (=1/2mv2, ..): Total
energy dissipated at the
dielectric surface.

Eq(=[ 17Rdt): Total
energy dissipated in the
remote resistance.

** Total energy supplied by the voltage source E; is independent of the resistance

 Surface dissipation E 4 decreases at the cost of increased remote resistive dissipation Eg

Capacitive Braking
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+» Patterning of electrode M1/M2 or dielectric reduces the impact velocity 0

% Patterning does not change the pull-in voltage and pull-in time significantly 10

¢ For p; impact velocity decreases with the decreases in fractal dimension D¢
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Conclusion

“+ Two novel techniques for reducing impact velocity are proposed which do not require any complex external circuitry.

¢ Resistive braking requires putting a resistance in series with the voltage source.
¢ Capacitive braking requires patterning of the electrode or the dielectric.
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