Non-obtrusive lifetime characterization technique for RF-MEMS

Sambit Palit, Ankit Jain and Muhammad A. Alam – Dept of ECE, Purdue University

RF-MEMS cantilever switch

![RF-MEMS cantilever switch diagram]

Why do we need non-obtrusive characterization technique?

- Simulation of a typical characterization procedure for RF-MEMS lifetime using consecutive stress-measure cycles, comparing expected ΔV_{PO} with (Measured) and without (Actual) measure step. The device is said to have failed when ΔV_{PO} exceeds a preset value of 10V.
- Characterization using stress-measure cycles yields pessimistic estimates of device lifetime.

Other non-obtrusive characterization techniques for dielectric charging:

1) Kelvin Probe Force Microscopy (KPFM) (U. Zaghloul et al., JVSTA, 2011)
 - Requires exposed dielectric surfaces.

2) Optical resonance detection (J. W. Lee et al., JMEMS, 2010)
 - Requires optical access to the membrane.

3) Center-shift method (R. W. Herfst et al., ICMTS, 2006)
 - Sensitivity and accuracy in determining ΔV_{PO} is unknown.

Measurement setup and simulation

- Capacitance of the cantilever RF-MEMS device is measured with varying AC measurement frequency. Resonance frequency (FRES) is determined as the frequency of peak in measured capacitance.
- From simulations, FRES is found to decrease with increasing VG (spring-softening effect) and increasing dielectric charge (increasing ΔV_Q).
- The complete electronic nature of this characterization technique opens possibilities for measurements on packaged devices, as well as for in-situ implementation of degradation detection circuits.

Resonance frequency measurements

Measurement of capacitance-frequency characteristics of a packaged RF-MEMS switch for different gate voltages (V_G) and voltage shifts due to dielectric charging (ΔV_Q) were performed to obtain resonance frequencies for each operating conditions. The obtained measurement data is found to have trends similar to those obtained from simulations.

Dielectric charging (represented by ΔV_Q) is characterized by a downward shift in F_{RES} for a given V_G.

Lifetime determination

- Determine RF-MEMS lifetime from measured transient of ΔF_{RES}.
- Determine ΔV_{PO} for a given measured ΔF_{RES}.