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The Boltzmann transport equation (BTE) iIs a general framework to characterize the transport of quantum
particles through a semi-classical framework. With these particles (electrons, phonons, neutrons, etc.), the
distribution function of particles in physical, temporal and phase space iIs found. For gas molecules, for
example, the distribution function f (r,v,t) is a function of physical space and time, and in addition, velocity
space. For phonons, the phase space Is wave vector space. In a typical sequential solution procedure, at each
time step, each point in phase space Is visited In turn, solving all physical space. This leads to slow
convergence due to strong inter-equation coupling caused by inter-particle scattering. The Coupled-Ordinates
Method (COMET), addresses this issue by visiting each spatial point in turn, solving all points in phase space In
point-coupled fashion. To promote the reduction of low wave-number errors, this point-coupled procedure |
ksed as a relaxation sweep in a FAS multigrid procedure.
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Gscretization

The BTE Is discretized using a finite volume method
In the spatial domain. For particles with trivial
dispersion or an unbounded velocity space, It Is
best to use spherical coordinates in phase space. A
finite volume discretization may be used to
discretize direction, while any quadrature rule may
be used to discretize magnitude. For particles,
such as phonons with complicated dispersion and a
finite k-space, a finite volume discretization can be

{sed to discretize phase space.
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/Uncertain Inputs

General Inputs
-Boundary condition values
-Domain geometry
BTE Inputs (when applicable)
-Relaxation times
-Force field vector

\—Dispersion relation
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COMET

At each spatial point, all points in phase space
are solved directly. A full approximation storage
(FAS) multigrid scheme is used, with a block
Gauss-Seldel scheme as the relaxation sweep.
Because coefficient storage quickly becomes
large, all coefficients are created on the fly at
the different multigrid levels
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This table shows the speedup obtained when
solving for radiative intensity in a quadrilateral Traverse Up Multigrid Cycle
cavity with a Planck number = 1.4e-5 for different
opti cal thicknesses Add Correction
Sequential COMET —— l _
7 kL CPU, s [terations CPU, s [terations f?f:;i;i?f};;: E:Et
650 Cells Ma t1‘1¢:?‘:.~:4 on the Flv
0.1L 11.25 12 12.4 5
1.0L 18.66 25 12.82 5
- 10.0L 144.06 239 16.45
T
OPtIC&' 2,600 Cells /«/ KM
thickness 0.1L 08.53 12 31.85 5 < Converged
: 1.0L 112.46 25 73.23 5 S _—
(Inverse 10.0L 690.99 252 72.65 5 ~_
Knudsen 10,400 Cells \l V CyCIe
0.1L 488.57 12 376.99 5
number) 1.0L 71497 24 344,63 ’ Finish
10.0L 3209.37 266 278.73
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