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Introduction 
The Boltzmann transport equation (BTE) is a general framework to characterize the transport of quantum 
particles through a semi-classical framework.  With these particles (electrons, phonons, neutrons, etc.), the 
distribution function of particles in physical, temporal and phase space is found. For gas molecules, for 
example, the distribution function f (r,v,t) is a function of physical space and time, and in addition, velocity 
space. For phonons, the phase space is wave vector space. In a typical sequential solution procedure, at each 
time step,  each point in phase space is visited in turn, solving all physical space. This leads to slow 
convergence due to strong inter-equation coupling caused by inter-particle scattering.  The Coupled-Ordinates 
Method (COMET), addresses this issue by visiting each spatial point in turn, solving all points in phase space in 
point-coupled fashion. To promote the reduction of low wave-number errors, this point-coupled procedure is  
used as a relaxation sweep in a FAS multigrid procedure. 

BTE Uncertain Inputs 
 
General Inputs 
   -Boundary condition values 
   -Domain geometry 
BTE Inputs (when applicable) 
    -Relaxation times 
    -Force field vector 
    -Dispersion relation 

Discretization 
The BTE is discretized using a finite volume method 
in the spatial domain.  For particles with trivial 
dispersion  or an unbounded velocity space, it is 
best to use spherical coordinates in phase space.  A 
finite volume discretization  may be used to 
discretize direction, while any quadrature rule may 
be used to discretize magnitude.  For particles, 
such as phonons with complicated dispersion and a 
finite k-space, a finite volume discretization can be 
used to discretize phase space. 

COMET 
At each spatial point, all points in phase space 
are solved directly. A full approximation storage 
(FAS) multigrid  scheme is used, with a block 
Gauss-Seidel scheme as the relaxation sweep. 
Because coefficient storage quickly becomes 
large, all coefficients are created on the fly at 
the different multigrid levels 

Radiation Results* 
This table shows the speedup obtained when 
solving for radiative intensity in a quadrilateral 
cavity with a Planck number = 1.4e-5 for different 
optical thicknesses 
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*S. R. Mathur, J. Y. Murthy, Journal of Thermophysics and Heat Transfer, 
1999, Vol. 12, No. 4, pp 467-473. 
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