
• Bayes network for two physics models  pull-in voltage model and creep model 

• Data of pull-in voltage for Device 1, and data of creep deflection for Device 2 are available 

• Device 1 and 2 are made of the same material (i.e., the same Young’s modulus E) 

 

 

 

 

 

 

 

 

 

 

• Option 1. Calibration with information flowing from  sub-network (A) to (B) 

• (1.1) Calibration of the pull-in voltage model 

  Calibrate model parameters (E and σrs) and ɛmf1 (assumed as a random variable) together 

 

 

 

 

 

 

 

 

• (1.2) Calibration of the creep model 

 Calibrate the creep model, with the posterior PDF of E obtained in (1.1) as the prior of E 

 

 

 

 

 

 

 

 

• Option 2. Calibration with information flowing from sub-network (B) to (A) 

• (2.1) Calibration of the creep model 

  Calibrate model parameters (Ac and E) and ɛmf2 (assumed as a random variable) together 

 

 

 

 

 

 

 

• (2.2) Calibration of the pull-in voltage model 

  Calibrate the pull-in voltage model, with the posterior PDF of E obtained in (2.1) as the prior of E    
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• Computational model y = G(x; θ) 

 

 

 

 
• Bayesian calibration 

 
 

 Pr(yD |θ) : likelihood function of θ (derived from the conditional probabilities 
         in the Bayes network) 

 π(θ) :       prior probability density function of θ 
 π(θ|yD) :   updated probability density function of θ 
 

• A probabilistic graphical model that represents a set of random variables and 

their conditional dependencies via a directed acyclic graph 

• Can include various sources of uncertainty, errors, model predictions and 

experimental data  

• Systematic way to combine multiple sources of uncertainty 
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a, b etc., component nodes 

g = G(a, b, …, f ) - final response 

U - combined set of all nodes { a, b,…, g } 

f(U)  =  f(a)   f(b| a)   f(c| a)   f(d| c)   f(e| b, d)   f(f)  f(g| e, f) 

f(U, m)  =  f(U)   L(m| b) 

With additional data node  m 
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Figure 1: Concept of Bayes Network 

• The voltage is increased in 5-volt steps during the measurement        

  pull-in voltage is reported within a 5-volt range  interval data  

• Incorporate interval data into likelihood function 
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• Uncertainty quantification in model parameters: infer/calibrate the probability distributions of parameters from available data 
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• Creep deflection is measured at multiple time points   time series data  

• Incorporate time series data into likelihood function 

 

 

  Note: If model output yt is a Gaussian vector with mean µt and covariance 

matrix Σy, yD
t is also a random vector with mean µt and covariance matrix Σ = Σy + 

σ2
obs     

 

Model G Input x 

Parameter θ 

Output y Data yD 

Model form error ɛmf (unknown) 
Measurement noise ɛobs ~ N(0, σobs) 
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• Two possible methods 

(1) Calibrate ɛmf  and model parameters together  increases the dimension 

of calibration variables (more feasible if ɛmf is treated as a random variable) 

(2) Calibrate model parameters first, and then estimate ɛmf  by comparing 

updated model and data  computationally efficient even when ɛmf is 

treated as a random process indexed by the model input x                    

 

Device 1 
Device 2 

Sub-network (A) for the 
pull-in voltage model 

Sub-network (B) for the 
creep model 

Note: Both options of calibration give the same updated PDF of E       
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