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Motivation Creep Model

Coble creep has been shown to be the dominant creep mechanism in

E 20 ™ nanocrystalline nickel RF-MEMS devices [3]. Coble creep is a form of diffusion
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Creep (permanent deformation resulting from sustained moderate levels of L] ‘Ao
stress) is a significant failure mechanism of the PRISM RF-MEMS device [2]. Y A, Material Parameter
Creep causes an undesirable increase in the deflection of the membrane, an Hsu, Koslowski, Peroulis o _
iIncrease of the device capacitance, a decrease of the device pull-in voltage, and 0Oy Yield Stress

eventually a possible collapse of the membrane.

Experiments performed by Hsu and Peroulis [3] have demonstrated the effect
of creep on the nanocrystalline nickel RF-MEMS device. Though significant, the
effects of creep had previously been neglected in the development of a simplified
model of the device.

The equation above describes the plastic (permanent) strain rate of the
membrane as a function of the stress in the membrane, the material’s yield
stress, and the collection of material parameters A., which includes creep
coefficient, grain boundary diffusion coefficient, Burgers vector, grain size,
temperature, Boltzmann Constant, and initial yield stress.

Results

 New model capabilities
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Results Verification & Validation oom | HenLSHNCT2
A model of Coble creep has been incorporated into a reduced-order beam » Verification against codes available on Memshub.org

model of the PRISM RF-MEMS device and against simple cases where analytical solutions exist
 Deflection, Pull-in voltage as a function of time, and Pull-in times due to creep « Comparison to existing higher-order models will yield the oum: ﬂ mﬂ

for various initial curvatures have been demonstrated. range of values for which this simplified beam and creep 09045557 o”sgumvgsg;ﬁ”%‘a
Advantages model is acceptable.

« Awide variety of parameters and their effects are included in the model
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« MEMSHUB PUQ tool allows the use of various UQ methods

e Several effects, such as contact, use very simplified models (see the graphs of Pull-In Time to the right)
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