Design of Electrostatically Actuated MEMS Under Uncertainties

Nitin Agarwal and N. R. Aluru, University of Illinois at Urbana-Champaign

Introduction

Sources of uncertainties in MEMS
- Material properties - Young’s modulus etc.
- Geometrical features - dimensions, gaps etc.
- Operating environment
- Boundary conditions

Objectives
- To design reliable and efficient MEMS devices,
- quantify the effect of various uncertain parameters on performance parameters,
- employ the uncertainty quantification data to identify critical design parameters.

Stochastic framework for MEMS:
Based on stochastic collocation approach,
- straightforward to implement, and,
- can be orders of magnitude faster than traditional approaches, such as Monte-Carlo (MC) method.

Problem formulation

Coupled Electro-Mechanical problem

Mechanical analysis
Large deformation elasticity problem

Electrostatic analysis
Boundary integral formulation

Deterministic coupled problem

\[\mathcal{L}(u, \sigma; x) = 0 \quad x \in \Omega \]

Solved using Finite Element Method (FEM) and Boundary Element Method (BEM)

Stochastic formulation

Stochastic formulation uses random variables and fields to model uncertain parameters:

- Deterministic: \(u(x), \sigma(x) \)
- Stochastic: \(u(x, \xi), \sigma(x, \xi) \)

\(\xi = [\xi_1, \ldots, \xi_n] \) n-id random variables

Stochastic coupled problem

\[\mathcal{L}(u, \sigma; x, \xi) = 0 \quad x \in \Omega \times \Xi \]

Stochastic collocation method
- Basic idea is to approximate the unknown stochastic solution using interpolation

\[\{u(x, \xi), \sigma(x, \xi)\} = \sum_{j=1}^{K} \{u(x, \xi^j), \sigma(x, \xi^j)\} \psi_j(\xi) \]

Sampling
- Solve deterministic problem at sparse grid nodes obtained using Smolyak algorithm

Design under uncertainties

Example: MEMS switch

Effect of uncertain Young’s modulus and gap
- Assumed to be uniformly distributed.

\(E_0 = 169 \text{ GPa} \)
\(\Delta E = 0.1E_0 \)
\(g_0 = 1 \mu m \)
\(\Delta g = 0.1g_0 \)

Figures

- MEMS lateral comb drive
- MEMS beam under deformation
- MEMS lateral comb drive
- Schematic of a MEMS switch
- Worst case and mean pull-in behavior
- Sensitivity of vertical tip displacement w.r.t. \(E \) and \(g \)
- Probability of pull-in