Software Integration
Michael McLennan
Purdue University
Site Visit
October 14-15, 2009
Software Integration Group

Michael McLennan
Chief Software Architect

Martin Hunt
Senior Software Engineer

Lin Sun
Software Engineer

Gazi Yildirim
Software Engineer

1. Create MEMOSA integration framework
2. Work with others to integrate code
3. Set up regression testing and monitor results
Software Components

<table>
<thead>
<tr>
<th>Code</th>
<th>From</th>
<th>Lang</th>
<th>LOC</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMMPS</td>
<td>Sandia</td>
<td>C++</td>
<td>118,000</td>
<td>MD simulator</td>
</tr>
<tr>
<td>FVM</td>
<td>Purdue</td>
<td>C++</td>
<td>10,000</td>
<td>Core for FVM solver</td>
</tr>
<tr>
<td>MPM</td>
<td>UNM</td>
<td>F90/F77/C</td>
<td>25,000</td>
<td>Core for MPM solver</td>
</tr>
<tr>
<td>Rar Gas Dyn</td>
<td>Purdue</td>
<td>F90</td>
<td>6,000</td>
<td>Boltzmann-ESBGK</td>
</tr>
<tr>
<td>Reactive MD</td>
<td>Purdue</td>
<td>C</td>
<td>27,500</td>
<td>Reactive force fields</td>
</tr>
<tr>
<td>Dislocations</td>
<td>Purdue</td>
<td>C/F77</td>
<td>2,000</td>
<td>Micromechanical models</td>
</tr>
<tr>
<td>Rappture</td>
<td>Purdue</td>
<td>C/C++/XML</td>
<td>60,000</td>
<td>Input/output handling</td>
</tr>
<tr>
<td>MEMOSA</td>
<td>Purdue</td>
<td>C/C++/Python</td>
<td>10,000</td>
<td>Simulation framework</td>
</tr>
<tr>
<td>Im Boundary</td>
<td>Purdue</td>
<td>C</td>
<td>5,000</td>
<td>FVM / MPM connection</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>Purdue</td>
<td>C++</td>
<td>10,000</td>
<td>Sensitivity analysis</td>
</tr>
<tr>
<td>UQ drivers</td>
<td>Purdue</td>
<td>C/Python</td>
<td>5,000</td>
<td>Uncertainty quantification</td>
</tr>
<tr>
<td>Models</td>
<td>Purdue</td>
<td>C/F77</td>
<td>5,000</td>
<td>Various physical models</td>
</tr>
</tbody>
</table>
MEMOSA Architecture

Python Scripts

Solver Suite

Python Bindings

Finite Volume Method (FVM)

Material Point Method (MPM)

C/C++ Data Objects

Setup

- ANSYS
- ProE
- CUBIT

Visualization

ParaView

Compact Models

LAMMPS

Mesoscale micromechanical models
Software Infrastructure for Collocation UQ

from Parameter import *
from sweep import *

define some parameters here
length = Parameter('length', 'Length', mean=5.0, max=5.8)
width = Parameter('width', 'Width', mean=30, max=32)

run script 'tsolver.py' on the list of parameters
uq_sweep('./tsolver.py', [length, width], level=2)

~/memosa/uq> ./test_uq.py
Solving for width=30.000000 and length=5.000000
Solving for width=30.000000 and length=4.200000
Solving for width=30.000000 and length=5.800000
...
Object-Oriented Infrastructure

- C++/F90 core for solvers
- C++ templates for arithmetic types
- Python objects for high-level scripting
Python Bindings

.i files for 33 classes (so far)

```cpp
template<class T>
class FlowModel : public Model {
public:
    FlowModel(const GeomFields& geomFields, 
               virtual ~FlowModel();
    virtual void init();
    void advance(const int niter);
};
```

```python
fmodel = models.FlowModelA(geomFields, flowFields)
fmodel.init()
fmodel.advance(numIterations)
```

SWIG - http://www.swig.org
Regression Tests

- Nightly regression tests: 90 tests
 - 6 FVM core
 - 4 MPM core
 - 75 FVM+MPM with simple geometries
 - 5 LAMMPS

- Framework for adding new tests
- Web-based system for browsing results
Visualization: ParaView

Visualize finite elements
AND particles

Notes online at https://memshub.org/information/memosa/wiki/ParaView
Project Infrastructure

- Subversion repository
 - FVM, MPM, LAMMPS code under build/test
 - 2.7 million lines of code in total under Subversion control
- Automated build system
 - make + 1,500 lines of Python
 - Configuration files for various platforms
- Wiki for project notes
Computational Power

Steele
848 x 8 core Dell 1950
60 teraFLOPS

Coates
1,000 x 8 core HP DL165
All 10 GigE
90 teraFLOPS

LLNL Hera
New Hub for MEMS

5 online lectures

1 simulation tool

Q-factor calculator with UQ

MEMOSA project

http://memsHUB.org
Plans for This Year

Finish UQ framework: compute output PDFs

Compact Model Framework

Improve connection to ParaView run in parallel

More regression tests
Q-Factor Calculator with UQ