Sensitivity Analysis in Computational Mechanics
Sanjay R. Mathur, Purdue University

What inputs yield the desired outputs?

Tangent problem: How does a specific input affect all outputs?

Adjoint problem: How is a specific output affected by all inputs?

Jacobian Computation

\[
J = \begin{bmatrix}
\frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_m}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_n}
\end{bmatrix}
\]

- **Continuous approach**
 - Derive sensitivity/adjoint pde; discretize and solve
 - Need to repeat for each pde – more complex

- **Discrete approach**
 - Start with discretized pde and add sensitivities and adjoints
 - Implement through automatic code differentiation
 - Easy to extend to new models

Inputs

\[x = 10, y = \pi/3, x' = 1, y' = 0\]

Outputs

\[p = 10, q = \pi/3\]

\[60.0 \quad 57.2958\]

\[p = x^2 + \sin(y), \quad q = p/y\]

Inputs

\[x = 10, y = \pi/3, x' = 0, y' = 1\]

Outputs

\[p' = 60.0 \quad q' = 57.2958\]

\[-273.88\]

\[p = 3x^2 + \sin(y); \quad q = p/y\]

What did we get?

- Exact derivative with respect to variable with unity prime
- Numerical, not symbolic value
- Works through loops and conditionals
- Must store value and derivative

Code differentiation

Decompose code into elementary unary and binary operations; propagate inputs to outputs

Original Functions

\[p = 3x^2 + \sin(y), \quad q = p/y\]

Elementary Decomposition

\[t_1 = x^2, \quad t_2 = 3t_1, \quad t_3 = \sin(y)\]

\[p = t_2 + t_3, \quad q = p/y\]

Original C++ code

```cpp
void myfunc(const double& x, const double& y, double& p, double& q) {
    p = 3 * x * x + sin(y);
    q = p / y;
}
```

Templated C++ code

```cpp
Template <class T>
void myfunc(const T& x, const T& y, T& p, T& q) {
    p = 3 * x * x + sin(y);
    q = p / y;
}
```

Tangent class T contains value and derivative

Operators are overloaded to operate on both values and derivatives.

Let the compiler do it!

Exploit C++ features:

- **Tangent** class through user-defined data types
- Operator overloading
- Templates and template meta-programming

Verification of sensitivity calculation

Compute \(F \) for two different \(h \) values, \(F_1(h_1) \) and \(F_2(h_2+\Delta h) \). Verify that:

\[
F_2 - \left(F_1 + 0.5 \left(\frac{dF_1}{dh} \right) \Delta h \right) \text{is small.}
\]

We find a value of 2.678x10^-6 (0.096% error) for \(\Delta h/h_1 = 0.071 \) at \(h_1 = 1.4 \mu m \)

Sensitivity to film height \(h \)

- \(\Delta p = (p - p_{top\ wall}) \) greatest at center and decreases outwards
- \(d\Delta p/dh \) most negative at center and increases to zero outward, i.e., center region is most sensitive to \(h \).
- As \(h \) decreases, \(\Delta p \) increases; vertical force \(F \) on cantilever increases; \(dF/dh = -4460 \text{ N/m} \)

Sensitivity of velocity field to viscosity changes

The greatest sensitivity is at the cantilever edge. The vertical fluid velocity is the most sensitive to viscosity changes and increases with an increase in viscosity. We find \(dV/d\mu = 127.557 \text{ N m/s/kg} \).