Predictive atomistic modeling in PRISM: Roadmap
Nathan Anderson, Hojin Kim and Alejandro Strachan
School of Materials Engineering, Purdue University

GOAL
Identify, characterize and quantify the fundamental mechanisms that govern the response of the PRISM device

Inform device-level simulations
- Dielectric charging
- Mechanical response
- Solid-fluid interactions

Dielectric charging
Characterize the formation of electrically active defects in dielectric induced by:
- Temperature
- Impact
- Electrical current & electric field

- ReaxFF to predict structures
- Ab initio, density functional theory calculations to compute electronic levels
- Collaborate with P. A. Schultz (Sandia)
- SeqQuest code

Years 2-4

Impact simulations
Large-scale atomistic molecular dynamics simulation
- Surface roughness evolution in multi-contact
- Defect generation during contacts
- Surface-surface interaction
- Role of electric current (local heating)

Years 1-5

Mechanical response of metallic bridge
- Dislocation-based plasticity in Ni
 - Nucleation and propagation
 - Interaction with grain boundaries
 - Deformation in TiO2 film
 - Grain sliding

- Large-scale MD simulations using LAMMPS
 - Year 1: existing state of the art potentials
 - Years 2 on: first principles-based potentials (e.g. charge equilibration)
 - Impact simulations as well as uniaxial tension

Years 1-3

Solid-fluid interaction
Given a distribution of incident momenta characterize the distribution of reflected momenta:

\[\sigma_i = \frac{E_i - E_r}{E_i - E_s} \]
\[\alpha_r = \frac{p_r - p_i}{p_i} \]

Fluid FVM models use accommodation coefficients from MD and predict incident distribution

Role of roughness and surface moisture on accommodation coefficients

Years 3

Planned large-scale simulations
- Ni with EAM potential
- SiO2
- 32,000 atoms / processor
- Force cutoff of 4.8 Å
- Steele: 0.117 sec per MD step
- SiCortex: 1.04 sec per MD step

- 9,000 atoms / processor
- Force cutoff of 5.5 & 9.0 Å

- 32,000 atoms / processor
- Force cutoff of 4.8 Å
- Steele: 0.117 sec per MD step
- SiCortex: 1.04 sec per MD step

Planned FY08 simulations
- Size: 131M Ni atoms – Simulation time: 500ps
- Resources: 4096 BGL processors for 45 hours
- Size: 131M Ni atoms + 37M-atom SiO2 – Simulation time: 100ps
- Resources: 4096 BGL processors for 45 hours