Modeling of Dielectric Charging in RF MEMS

Sambit Palit (spalit@purdue.edu), Muhammad Ashraful Alam (alam@purdue.edu) – Department of ECE, Purdue University
Collaborators: Dimitrios Peroulis – ECE, Purdue University, Alejandro H Strachan – MSE, Purdue University

Basic simulation method involves self-consistent solving of

\[\nabla^2 \phi = \frac{4Q}{\varepsilon} \]

Transport equation: \(\frac{dQ}{dt} = f(Q, \phi) \)

Reliability concerns – Dielectric charging and degradation, leakage currents, stiction, surface roughness, dielectric heating.

Motivation - Integrating different physical models to address reliability concerns with increased confidence.

Limitations of existing work
1. Use of Empirical models based on experiments
2. Overdependence on unphysical fitting parameters
3. Nature and distribution of dielectric traps
4. Dielectric degradation and breakdown
5. No space charge variation taken into account

Proposed approach

Electro-mechanical response of membrane

Surface properties and degradation

Charging dynamics

Charging dynamics – Model approach

A SONOS flash memory cell is a very similar system

SiO₂

SiO₂

Si₃N₄

Substrate

Planim for experiments

Phase 1 – Fixed membrane devices
1. Determine \(Q(z) \)
2. Determine band properties like workfunctions
3. Calibrate spatial and energy distribution of traps
4. Measure dielectric degradation with applied voltage and temperature stress

Phase 2 – Moving membrane devices
1. Determine \(Q(x,y,z) \)
2. Calibrate effect of surface roughness
3. Verification of computational model

Surface roughness

Modeling of surfaces using fractals to predict spatial variation of charge density

Charging current – Transport issue

- S. Melle, David De Conto (LAAS-CNRS)

Dominant conduction mechanism is Frenkel-Poole

Distributed dielectric charging – Poisson issue

Resultant downward force on the membrane is not zero, even for zero charge in the dielectric.

Effect of negative dielectric charge

Note: SRAV = Shift Rate of Actuation Voltages

Dielectric charging – Transport issue

- Xiaobin Yuan, Zhen Peng, J.C.M.Hwang (Lehigh)

\[Q = \sum Q_j \left[1 - \exp \left(-f_{0,5\sigma} / \tau_{0,5} \right) \right] \exp \left(-f_{0,5\sigma} / \tau_{0,5} \right) \]

Membrane response – Simple model

\[F_{sp} = m \frac{d^2 y}{dt^2} = F_{el} - F_{sp} - b \frac{dy}{dt} \]

Plans for experiments

A SONOS flash memory cell is a very similar system

Surface roughness

Modeling of surfaces using fractals to predict spatial variation of charge density