Evaluation of Economic Impacts due to Disruptions in Freight

Craig Collins Prof. Satish Ukkusuri

7 / 27 / 2011

Introduction

•Why is this topic important?

Decision Making

Economic Effects

Other possible reasons?

• Become acquainted with the topic

• Develop a framework

• Identify performance measures

• Sources for data retrieval

Framework

Direct Impacts

- Measured when a disruption first occurs
- Assuming we know the network...

– (Hu, 2008):

- $C_{vehicle} = Time loss * unit private operating cost * average speed$
- $C_{\text{transportation}} = C_{\text{vehicle}} * \%$ of commercial freight * Total # vehicles impacted
- American Trucking Association uses value of \$1.25 (1994) or \$2.90 per mile (2011)
- Freight Analysis Framework (FAF) provides percentages of commercial freight, by industry & region
- IHS Global Insight used for CMAP
- State DOTs provide information on AADT flows and adjustment factors

Direct Impacts

- Disruption Impact Estimating Tool Transportation (DIETT)
 - Developed by NCHRP (NCHRP
 - Uses direct costs and GIS information to assess TCPs.
 - Mountain passes, tunnels, and bridges (i.e. National Bridge Inventory Database from FHWA)

N:	1		T	h-10							TRANSPORTATION	CHOKE POINT (TCP) PRIORITIZATI	ON SCENAF	RIOS
File	cion Impact E	stimating 100	i - Transpor	cation								Default Categories	Values	Instructions
110												Average Tons of Cargo Per Truck	15.00	
State:		Metropolis			Database:	e:\nextrans	s\diett\GeoDatabase	ATCP.mdb				Average Tons of Cargo Per Rail Car	65.00	
Trusk	o Por Dou	1000			•							Average Tons of Cargo Per Barge	1,000	
HUCK	sreibay											\$/Ton/Mile - Truck	\$0.2620	
Span	Length (m)	20			Records:	4031	Scoring Method	Ne:	xt Quit		TRANSPORTATION IMPACT	\$/Ton/Mile - Rail	\$0.0226	
											SCENARIO DEVELOPMENT	Traffic Volume on Detour - Truck	Low	
	Value (\$1000	1 Description	Boute	Material	Design	Detour	Traffid Span I	enatk TCP	Length Over 0	n Bridge		Traffic Volume on Detour - Rail	Med	
	\$120	37 miN HS	Carries: 0	Prestressed c	Box Beam or	4.0	12427	42.6	76.5 Highwau with/ Hi	abwau/Ped		Transportation-related Cost of Delay (\$/Ton/Day) -		
F-	\$27	7 07-I A-002-12	Carries: SB	Concrete con	Box Beam or	4.0 2.0	27092	42.0 22.3	46.9 Highway with/ Hi	ghway/Ped		Barge	\$2.00	
	\$1.692	2.6 MINUCT	Over I-20 I	M Concrete con	Tee Beam	13.0	13341	23.8	86.6 Highway with/ Hi	ghwayn ou		Cargo Losses / Day (% of Cargo Value)	2.2%	
	\$2,293	3 1.3 MI.N.OF	0ver: 1-85 1	M Concrete con	Tee Beam	13.0	36810	20.7	107.6 Highway with/ Hi	ghway		Default Categories	Values	Instructions
	\$222	2 1.65 miE Jct	Over: US 60	D Concrete con	Box Beam or	1.0	102809	28.6	58.8 Highway with/ Hi	ghway/Ped		% of Cargo High Value - Truck	60%	
	\$359	0.9 MI W US	Over: I-10-I	M Concrete con	Tee Beam	2.0	30590	29.3	106.7 Highway with / Hi	ahuau		V of Oargo Mad. Value - Truck	00%	
	\$274	5.3 MI E SR 5	Over: I-10-I	M Concrete con	Tee Beam	5.0	15969	20.7	54.6 Highway with			% of Cargo Med. Value - Truck	30%	
	\$4,148	3 5 MI S CAFF	0 ver: 1-20-1	M Concrete con	Tee Beam	23.0	30310	22.3	81.1 Highway with			% of Cargo Low Value - Truck	10%	
	\$53	8 07-LA-010-27	Carries: I-10	Concrete	Tee Beam	2.0	67698	23.5	24.7 Highway witi			100%)	100%	
	\$2,315	5 0.9 MI E MIS	Over: I-10-I	M Concrete con	Tee Beam	18.0	23705	23.8	86.3 Highway with			10078) 9(of Oceans High Malus - Deil	000/	
	\$86	6 07 LA-101-S	Carries: US	Concrete con	Tee Beam	3.0	42098	20.4	52.1 Highway with/ Hi	ghway	1	% of Cargo High Value - Rall	20%	
	\$146	6 07-LA-405-23	Carries: 0	Concrete con	Box Beam or	2.0	93206	25.0	59.7 Highway with/ Hi	ghway/Ped		% of Cargo Med. Value - Rail	50%	
	\$224	6 MI N JCT 16	0 ver: 1-65 1	M Concrete con	Tee Beam	2.0	17715	20.7	75.3 Highway with/ Hi	ghway		% of Cargo Low Value - Rail	30%	
	\$121	3MLS JCT 15	0 ver: 1-59 1	M Concrete con	Tee Beam	2.0	7512	22.3	80.8 Highway with/ Hi	ghway		% of Cargo Total Value - Poil (Should Equal 100%)	100%	
-	\$1,885	3.7 MI.N.UF	Uver: 1-65-1	M Concrete con	Tee Beam	23.0	13825	22.3	80.8 Highway with/ Hi	ghway	DIRECT ECONOMIC IMPACT	% of Cargo Total Value - Kall (Should Equal 100%)	100%	
-	\$2,483	B 6.1 MI.N.UF	Uver: 1-65 1	M Concrete con	Tee Beam	23.0	13825	29.3	106.7 Highway with/ Hi	ghway	SCENARIO DEVELOPMENT	% of Cargo High Value - Barge	5%	
-	\$453	JULIUSII&	Uver: 1-59 r	M Loncrete con -	lee Beam	5.0	8227	32.0	TT6.7 Highway with7 Hi	gnway 🗾		% of Cargo Med. Value - Barge	25%	
										Þ		% of Cargo Low Value - Barge	70%	
										% of Cargo Total Value - Barge (Should Equal 100%)	100%			
	<u>oner manueu</u>	<u></u>										Alternate Route Reliability - Truck	95%	
	1. Select '	State" *	D DU			5. Click on "So	coring Method" to se	parameters	NU 1			Alternate Route Reliability - Rail	99%	
	2. Select o 3. Select o	iesired Tručks lesired "Span Li	-er Day enoth (m)''			 Prioritize or When done 	r desired category - " e press "Next" - This	vaiue (\$1000) akes vou into) is recommended the spread sheet model			Inventory Cost: % of Cargo/Year	18%	

- 3. Select desired "Span Length (m)"
- 4. Repeat steps 2 3 until the record count equals approximately 500

* NOTE - Only Fredonia is active. Some calculations may take several minutes

8. If you desire to do another run, restart the DIETT application

			TCP CH		RESULTS						
				TCP Identifiers	Total Costs		I/Disruption	Total Cost	Economic		
							Transportatic				
	#					Span	n		rotal	As a % of	Costs As
		Туре	Name	No./Code	Material	Length (m)				Cargo Value	% of Total
	1	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF:	#REF!	#REF!	#REF!
ΡΠΟ	2	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!
IUN	3	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!
	4	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!
U Ν Ι V Ε	5	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!

Indirect Impacts

• The consequences of direct impacts

Indirect Impacts

- Economic
 - Input/Output (I/O) Model
 - Computable General Equilibrium (CGE) model
- Societal
 - Safety & Security
 - Environmental

Input / Output Model

 Use matrices to predict the flow of goods and services between different sectors

Hypothetical Transactions Table

Industry Purchasing

		Pro	cess	ing	Sect	or				Final Deman	d		
	Outputs ¹	(1)	(2)	(3)	(4)	(5)	(6)	(7) Gross inventory accumula-	(8) Exports to foreign	(9) Government	(10) Gross private capital	(11)	(12) Total Gross
10	+	A	В	C	D	E	F	tion (+)	countries	purchases	formation	Households	Output
ec	(1) Industry A	10	15	1	2	5	6	2	5	1	3	14	64
00	(2) Industry B	5	4	7	1	3	8	1	6	3	4	17	59
in	(3) Industry C	7	2	8	1	5	3	2	3	1	3	5	40
ess	(4) Industry D	11	1	2	8	6	4	0	0	1	2	4	39
nc	(5) Industry E	4	0	1	14	3	2	1	2	1	3	9	40
Pr	(6) Industry F	2	6	7	6	2	6	2	4	2	1	8	46
try Pr	(7) Gross inventory depletion ()	1	2	1	0	2	1	0	1	0	0	0	8
sec	(8) Imports	2	1	3	0	3	2	0	0	0	0	2	13
Ind nents	(9) Payments to government	2	3	2	2	1	2	3	2	1	2	12	32
Payn	allowances	1	2	1	0	1	0	0	0	0	0	0	5
	(12) Total Gross	19	23	-	5	9	12	1	0	8	0	1	85
	Outlays	64	59	40	39	40	46	12	23	18	18	72	431

¹Sales to industries and sectors along the top of the table from the industry listed in each row at the left of the table. ²Purchases from industries and sectors at the left of the table by the industry listed at the top of each column.

Input / Output Model

Software and databases such as <u>RIMSII, IMPLAN, and REMI</u>

Detailed industry code and title	Related 2002 NAICS Codes	
AGRICULTURE, FORESTRY, FISHING AND HUNTING		
1110 Crop production		
1111C0 Oilseed and grain farming	11111-2, 11113-6, 11119	
111200 Vegetable and melon farming	1112	
1113B0 Fruit and nut farming	11131-2,111331-4, 111335-6, 111339	
111400 Greenhouse, nursery, and floriculture production	1114	1
111910 Tobacco farming	11191	1
111920 Cotton farming	11192	1
1119C0 All other crop farming, including sugarcane and sugar beet farming	11193-4, 111991-2, 111998	1 1 1
1120 Animal production		1
1121A0 Cattle ranching and farming	11211, 11213	1
112120 Dairy cattle and milk production	11212	1
112A00 Animal production, except cattle and poultry and eggs	1122, 1124-5, 1129	2
112300 Poultry and egg production	1123	22
1130 Forestry and logging		2
113A00 Forest nurseries, forest products, and timber tracts	1131-2	2
113300 Logging	1133	2
1140 Fishing, hunting and trapping		2
114100 Fishing	1141	
114200 Hunting and trapping	1142	3
1150 Support activities for agriculture and forestry		3
115000 Support activities for agriculture and forestry	115	3
MINING		3

	1.0100	1.0200	1.0301	1.0302
1	1.5957 0 .0001 .0033 .0429 .1780 .0001 .0089 .0091	1.2644 0 .0003 .0014 .0296 .5404 .0001 .0081 .0194	1.9012 0 .0003 .0031 .0461 .1867 .0001 .0098 .0092	1.3775 0 .0001 .0003 .0022 .0331 .3033 .0001 .0081 .0084
11	.0227 .0723 .0114 .0026 .0043 .0093 .0092 .0060 .0165	.0212 .0712 .0177 .0020 .0021 .0030 .0063 .0057 .0041 .0140	.0246 .0664 .0124 .0027 .0031 .0043 .0083 .0108 .0108 .0108	.0204 .0551 .0173 .0022 .0037 .0067 .0111 .0067 .0158
21 22 24 25 26 27 28 29 30	.0009 .0020 .013 .1188 .0377 .0535 .1481 .0793 .0646 .0514	.0008 .0019 .0012 .1041 .0325 .0499 .1112 .0688 .0459 .0382	.0010 .0023 .0015 .1130 .0417 .0463 .1443 .0868 .0706 .0643	.0008 .0019 .0012 .1004 .0339 .0506 .1157 .0716 .0510 .0463
31 32 33 34 35 36 37 38	.2017 .0146 .0137 .0743 .0419 .0752 .0664 .7000	.1341 .0133 .0120 .0608 .0362 .0730 .0574 .6145	.2417 .0159 .0150 .0816 .0462 .0914 .0712 .7745	.1609 .0129 .0126 .0690 .0377 .0714 .0594 .6384

RIMSII provides tables for final demand, employment, output, earnings

(BEA, 2011)

Computable General Equilibrium (CGE) Model

- S.A.M a matrix representation of the national accounts for a given country
- Constraints are used to relate economic principles
- Non-linear

Allow for input substitution

Computable General Equilibrium (CGE) Model

- •Predominant model for estimating
- •World Bank, IMF
- •GTAP at Purdue (GTAP.org) IMPLAN

(CIRDAP, 1998)

13

Resiliency

- Resiliency is defined as the ability to rapidly restore service after a disruption. (WSDOT, 2009).
- Encompasses direct and indirect impacts.
- Many states have instituted resiliency plans.
- Proper planning has been shown to reduce congestion and mitigate disruptions.(Cambridge, 2007).

Environmental

• In the form of noise, disturbance of wildlife, releasing of pollutants

• EPA is the primary source of models in US for regulatory purposes

 Current model – Motor Vehicle Emission Simulator (MOVES)

Environmental

- MOVES
 - Estimates based on sec by sec vehicle performance characteristics
 - Estimate emissions at national level down to individual transportation projects
 - Output in a variety of units
 - Inputs include time of day, time span, geographic bounds, and road types

Environmental

How to place a monetary value on emissions

- (NHTSA, 2011) uses \$21/ton
 - \approx \$0.20 / gal of gas

Table 3.4.3-1 Social Cost of CO ₂ , 2010 – 2050 (in 2008 dollars per metric ton)									
Year	5% Average	3% Average	2.5% Average	3% 95 th percentile					
2010	\$4.80	\$21.85	\$35.84	\$66.26					
2015	\$5.82	\$24.30	\$39.21	\$74.33					
2020	\$6.94	\$26.85	\$42.58	\$82.39					
2025	\$8.37	\$30.22	\$46.86	\$92.30					
2030	\$9.90	\$33.49	\$51.05	\$102.10					
2035	\$11.44	\$36.76	\$55.34	\$112.00					
2040	\$12.97	\$40.02	\$59.63	\$121.81					
2045	\$14.50	\$42.98	\$62.28	\$130.48					
2050	\$16.03	\$45.84	\$66.37	\$139.06					
Stock Price in Dollars									
³⁵ (NHTSA, 2011)									

 Let the markets decide!

 Safety refers to the ability for users of the system to reach their destination safely

 Quantified by the monetary value of damage to vehicles or operators

• Like environmental, very subjective

- How to measure
 - (Liu, 2003) gives a hint
 - Hangzhou-Ningbo Expressway in China
 - -2 to 4 lanes
 - Comparing a normal route to a detour

$$\mathbf{P}_{a} + \mathbf{P}_{b} + \mathbf{P}_{c} + \mathbf{P}_{d} = \mathbf{P}_{total}$$

Ţ

Safety & Security

- Available data
 - Indiana uses ARIES
 - HSIS covers CA, IL, ME, NC, MN, OH, UT, WA
 - Crash details such as road name, vehicle make, milepost
- Cost of life
 - US DOT recommended \$5.8 mil (2007)

ARIES: Fatal and injury collisions involving large trucks, 2009.

(ICJI, 2010)

- Security: Risk assessment associated with an accident
 - Process of evaluating potential consequences from events and their probabilities (CCPS, 1995)
- Relevance
 - Hazardous chemicals
 - Terrorist attacks
 - Natural disasters

- How to quantify risk
 - Definition of events
 - i.e. Types of chemicals (Egidi, 1995)
 - Estimate of the magnitude (consequences)
 - Impact area, population density
 - -P(x) or frequency of occurrence
 - Department of Transportation (DOT) Hazardous Materials Information System (HMIS) database,
 - The National Weather Service
 - USGS.gov

Putting It All Together Borman Corridor

(Google, 2011)

- •Lake County, IN
- •16 miles long
- •Alternate route from toll roads

Exit list

County	Location	Mile ^[12]	Exit	Destinations	Notes				
Lake	Hammond	0.00		🤯 I-94 west – Chicago	Illinois state line				
		0.87	1	US 41 north (Calumet Avenue) – Hammond, Munster	Western end of US 41 concurrency				
		2.39	2	US 41 south / SR 152 north (Indianapolis Boulevard) – Hammond, Highland	Eastern end of US 41 concurrency; serves Purdue University Calumet				
		3.35	3	Kennedy Avenue	Serves Visitors' Center				
	Gary	4.92	5	SR 912 (Cline Avenue) – East Chicago, Griffith	Serves Gary/Chicago International Airport				
		6.44	6	Burr Street					
		8.96	9	Grant Street					
		9.92	10	53 SR 53 (Broadway)	Serves Indiana University Northwest				
		11.01– 11.80	11 12	65 (0) I-65 to Ind. Toll Rd. − Indianapolis	Signed as exits 11 (south) and 12 (north) eastbound and exits 12A (south) and 12B (north) westbound; freeway narrows from 4 to 3 lanes				
	Lake Station	12.68	13	Central Avenue	Eastbound exit and westbound entrance, which is temporarily closed due to construction				
		15.00	15	(Ripley Street)	Eastern end of US 6 concurrency; signed as exits 15A (south/east) and 15B (north); westbound exit 15B is part of exit 16				
		15.51	16	🤯 🕖 I-94 east / I-80 east / I-90 / Ind. Toll Rd.	Eastern end of I-80 concurrency; eastern terminus of Borman Expressway				
	Road continues east as Interstate 94								
	1.000 mi = 1.609 km; 1.000 km = 0.621 mi Concurrency terminus • 🗌 Closed • 🔄 Incomplete access • 🔛 Unopened								

Putting It All Together Borman Corridor

- Step 1: Develop a network/Direct Impacts
 - Use FAF, GIS, Census data
 - Shortest path, agent-based?
- Step 2: Economic Impacts
 - Purchase multipliers from RIMSII
 - Purchase SAMs from GTAP
- Step 3: Environmental
 - MOVES
- Step 4: Safety & Security
 - Purchase data from ARIES, HSIS.
 - USGS.gov, HMIS

Putting It All Together Borman <u>Corridor</u>

Туре	Description	Estimated Cost
FAF	Commodity Flows	Free
RIMSII	62 industries * \$75	\$4,650
CGE	GTAP:This package includes GTAPAgg, FlexAgg, an abridged version of the GTAP Data Base Documentation, and a GTAPAgg license to allow unlimited aggregations.	\$1,035
MOVES	Emissions Modeling	Downloadable - Free
ARIES	Crash Information - Indiana	Permission Needed - Free
HSIS	Crash Information - Illinois	Permission Needed - Free
	Total	\$5,685

• Developed a framework

 Related GDP, output, employment, final demand, emissions, safety, and security

• Identified useful sources

Summary

Source Summary							
Category	Division	Site	Link				
	I/O	RIMSII IMPLAN REMI	BEA.GOV IMPLAN.COMREMI.COM				
Economic	CGE	GTAP IMPLAN REMI	GTAP.ORG IMPLAN.COM REMI.COM				
	Environmental	MOVES NHTSA	EPA.GOV/OTAQ/MODELS/MOVES NHTSA.GOV				
Societal	Safety & Security	HSIS US Geological Survey Hazardous Materials Info System	HSISINFO.ORG USGS.GOV BTS.GOV (KEYWORD:HMIS)				
Misc.	Resiliency Freight Database	Resiliency Freight Analysis Framework	(ROSE, 2005,2009) HTTP://WWW.OPS.FHWA.DOT.GOV/FREI GHT/FREIGHT_ANALYSIS/FAF/				
Us	seful Links	Federal Highway Administration Resource and Innovative Technology Administration	HTTP://WWW.FHWA.DOT.GOV/ HTTP://WWW.RITA.DOT.GOV/				

Difficulties

No \$ / No respect

• Lack of experience

• Broad topic

• Lots of A.C.R.O.N.Y.M.S.

Thank you!

NEXTRANS

• Prof. Ukkusuri

• Prof. Ukkusuri's Research Group

References

- Ackerman, Frank, and Elizabeth A. Stanton. The Social Cost of Carbon. Economics for Equity and Environment (E3 Network). 2010. http://www.e3network.org/papers/SocialCostOfCarbon_SEI_20100401.pdf.
- American Trucking Associations (ATA). 1994 Motor Carrier Annual Report: Financial and Operating Statistics. Technical Report, American Trucking Associations, Alexandria, VA. 1995.
- Bendixen, L., Freeman, R., Hendershot, D. Using the CCPS Guidelines for Chemical Transportation Risk Analysis. Process Safety Progress .Vol. 16, No. 1, 1997.
- Cambridge Systematics Inc., 2009, "Performance Measurement Framework for Highway Capacity Decision Making" SHRP S2-CO2-RR Transportation Research Board, Washington, D.C. 2009.
 http://www.onlinepubs.trb.org/onlinepubs/shrp2_s2-CO2-RR.pdf.
- Center for Chemical Process Safety (CCPS). Guidelines for Chemical Transportation Risk Analysis. American Institute of Chemical Engineers, New York, 1995
- Federal Highway Administration (FHWA). United States Department of Transportation . Quick Response Freight Manual II. September 2007. Web July 7, 2011.
 ">http://ops.fhwa.dot.gov/freight/publications/qrfm2/index.htm#toc>.
- Greenway, R. "EPA Launches Updated Motor Vehicle Emission Simulator." Environmental News Network. December 28 2009. Web: 1 June 2011. < http://www.enn.com/>
- Highway Safety Information System (HSIS). HSISinfo.org. Web July 11, 2011.
- Hu, S., Estimation of Economic Impact of Freight Disruption due to Highway Closure. PHD dissertation. Massachusetts Institute of Technology. 2008.
- Hwang, S., Brown, D., O'Steen, J., Policastro. A., and Dunn, W., Risk assessment for national transportation of selected hazardous materials, Transportation Research Record 1763 (2001), pp. 114–124. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (5).
- Illinois Department of Transportation (IDOT). Average Annual Daily Traffic Maps. 2009. Web June 27, 2011. http://www.dot.il.gov/trafficmaps/table.htm
- Indiana Criminal Justice Institute. The Automated Reporting Information Exchange System (ARIES), August 2009. Web July 11, 2011.<http://www.in.gov/cji/2481.htm.

References

- Indiana Criminal Justice Institute. Indiana Traffic Safety Facts Sheet for Large Trucks, May 2010.
- Ivanov, B.. Can Your State Recover from Major Disruptions to Freight Systems?
 - Eight Steps to Resiliency." Washington State Department of Transportation. November 18, 2009.
- Kockelman, K. Tracking Land Use, Transport, and Industrial Production using Random-Utility Based Multiregional Input-Output Models: Applications for Texas Trade. Transport Geography, 2 February 2004.
- Liu, L. "Evaluating Economic Benefits of Newly Opened Expressways in China." Transportation Research Record. National Academy Press, ISSU 1839, pages 120-127. 2003.
- National Cooperative Highway Research Program (NCHRP). Disruption Impact Estimation Tool-Transporation (DIETT), A Tool for Prioritizing High-Value Transportation Choke Points. NCHRP Report 525, Vol. 11. Washington D.C. 2006.
- National Highway Traffic and Safety Administration. Corporate Average Fuel Economy for MY 2011 Passenger Cars and Light Trucks. 2009. http://www.nhtsa.gov/DOT/NHTSA/Rulemaking/Rules/Associated%20Files/ CAFE_Final_Rule_MY2011_FRIA.pdf.
- National Highway Traffic and Safety Administration (NHTSA). Medium- and Heavy-Duty Fuel Efficiency Improvement Program Final Environmental Impact Statement. June 2011.
- Niemeier, D., Bai, S., Eisinger, D. MOVES vs. EMFAC: A Comparative Assessment Based on on a Los Angeles County Case Study. Univeristy of California Davis. August 22, 2008.
- Office of the Secretary of Transportation (2009). Guidance Memorandum: Treatment of the Economic Value of a Statistical Life in Department Analysis. Annual Revision. 2009.
 - <http://ostpxweb.dot.gov/policy/reports/VSL%20Guidance%20031809%20a.pdf>.
- Perlich, Pam. Input Output Models. Inter-Industry Structure. University of Utah. URBPL 5/6020. Web 20 June 2011.
- Raney, B. and Nagel, K., Iterative route planning for large-scale modular transportation simulations. Future Generation. Computer. Systems. Vol. 20, no. 7, pp. 1101–1118, 2004.
- Research and Innovative Technology Administration. U.S. DOT. Freight Transportation. Transportation Vision 2030. January 2008.

References

- Rose, A. A Framework for Analyzing the Total Economic Impacts of Terrorist Attacks and Natural Disasters, Journal of Homeland Security and Emergency Management, Volume 6, Issue 1 Article 9. 2009.
- Transportation Research Board (TRB). Policy Options for Saving Energy and Reducing Greenhouse Gas Emissions from Transportation. Special Report 307. Washington, D.C. 2011.
- Transportation Research Board (TRB). Travel Estimation Techniques for Urban Planning. NCHRP Report 365. Nation Academy Press, Washington D.C. 1998.
- U.S. Bureau of Labor Statistics (BLS). Occupational Employment Statistics. April 6 2010. Web June 27, 2011. ">http://www.bls.gov/oes/current/oes_nat.htm#53-0000>
- U.S. Department of Energy. "Final Rule Technical Support Document (TSD): Energy Efficiency Program for Commercial and Industrial Equipment: Small Electric Motors," Appendix 15A (by the Interagency Working Group on Social Cost of Carbon): "Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866." 2010.

<http://www1.eere.energy.gov/buildings/appliance_standards/commercial/sem_finalrule_tsd.html.>

