Introduction to Energy: Engineering Solar Ovens

Energy Science course (semester elective)

Harmony School, Bloomington, Indiana

Grades 7-10

Objective

Students will be introduced to the concepts of energy and thermodynamics by using an engineering design process to build, test and evaluate solar ovens.

Learner Outcomes

Students will be able to:

- Explain various forms of energy and give examples of how they can be transformed.
- Understand how the First Law of Thermodynamics relates to cooking food.
- Identify problems associated with traditional sources for cooking heat, as well as advantages and disadvantages of using solar energy for cooking heat.
- Describe how solar energy can be used in our everyday lives and homes.
- Describe heat transfer and the relationship among radiation, convection, conduction, absorption and insulation.
- Describe light energy and the relationship among transmission, reflection and refraction.
- Predict how various materials interact with light and heat energy.
- Create a diagram of energy transformations.
- Use an engineering design process to create, test and revise a prototype.
- Construct a solar cooker that fully cooks a food of the students’ choice.

Lesson Overview

<table>
<thead>
<tr>
<th>Session</th>
<th>5E</th>
<th>Description</th>
<th>STEM Disciplines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engage</td>
<td>Introduction to heat and light</td>
<td>Physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present design challenge</td>
<td>Engineering</td>
</tr>
<tr>
<td>2</td>
<td>Exploration</td>
<td>Field trip to passive solar home</td>
<td>Environmental Science</td>
</tr>
<tr>
<td>3</td>
<td>Explanation</td>
<td>Design solar ovens</td>
<td>Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Geoscience</td>
</tr>
<tr>
<td>4</td>
<td>Exploration</td>
<td>Build solar ovens</td>
<td>Engineering</td>
</tr>
<tr>
<td>5</td>
<td>Elaboration</td>
<td>Test and revise prototypes</td>
<td>Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graph and analyze data</td>
<td>Mathematics</td>
</tr>
<tr>
<td>6</td>
<td>Evaluation</td>
<td>Cook with solar ovens</td>
<td>Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assess oven design</td>
<td>Environmental Science</td>
</tr>
</tbody>
</table>
Next Generation Science Standards

Physical Science: Energy

- HS-PS3-3: Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

Science and Engineering Practices

- HS-ETS1-1: Asking Questions and Defining Problems
- HS -ETS1-2: Engaging in Argument from Evidence
- HS -ETS1-3: Analyzing and Interpreting Data
- HS -ETS1-4: Developing and Using Models

Earth and Space Sciences

- HS-ESS3-2: Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.

Disciplinary Core Ideas

- PS3.A: Definitions of Energy
- PS3.B: Conservation of Energy and Energy Transfer
- ETS1.A: Defining and Delimiting Engineering Problems
- ETS1.B: Developing Possible Solutions
- ETS1.C: Optimizing the Design Solution

Cross-Cutting Concepts

- Systems and Systems Models
- Energy and Matter

Materials

Total cost for 32 students (8 groups of 4) = $566

See attached supply spreadsheet

- **Harmony Solar Oven Challenge worksheet packet**
- **Reflection/Refraction** (aluminum foil, reflective plastic, silver paint, silver duct tape, mirrors, magnifier)
- **Insulation** (cardboard boxes, foam insulation, newspaper, packing peanuts)
- **Construction** (white glue, glue guns, scissors, utility knives, rulers, pencils, paint brushes, rubber bands)
- **Absorption** (black paper, black paint, black duct tape)
- **Transmission** (plexiglass, oven bags, plastic wrap)
- **Measurement** (thermometers, timers)
- **Cooking** (aluminum or iron cookware, jars, tin cans, plastic bottles, oven mitts, food - rice, flour, marshmallows, etc.)
Daily Lesson Plans

Session 1 (1 hr.)

Introduction to Energy (15 min)
* Define energy.
* Ask the class to brainstorm a list of different forms of energy
* Discuss the idea energy can be transformed from one type to another
* Introduce First Law of Thermodynamics

Energy and Cooking (20 min)
* Ask students to describe various ways to use heat to cook food.
* Bring students to the board to help create a diagram of energy conversions during the cooking of food.
* Discuss the problems with many traditional ways of cooking.
 o Electric stoves use coal-generated power
 o Gas stoves emit greenhouse gases CO₂ (and some methane)
 o Firewood use leads to deforestation
 o Burning biomass releases carcinogens and other toxic fumes.
 o Collecting firewood is laborious/ fuel can be relatively expensive to many people in the world
 o Health implications of not having adequate cooking fuel:
 ▪ Contaminated drinking water kills 3.4 million people annually
 ▪ Risks associated with women/girls searching for fuel
* Explain the amount of solar energy available on Earth each hour, compared to our use of other forms of energy
 o 4.3x10^20 Joules per HOUR from incident solar energy VS.
 o 5.1x10^20 Joules per YEAR (2012) annual consumption!
* Show YouTube videos:
 o Cooker design company in Hong Kong http://youtu.be/cdccGqpcNRw
 o Darfur refugees avoid sexual harassment http://youtu.be/Dn2v6fJTl2s

Solar Oven Challenge (20 min)
* Present challenge to class and allow for some preliminary brainstorming and questioning as a whole class.
 o What are potential applications for solar ovens?
 ▪ Backpacking, natural disasters, refugee camps, space
 o Where in the world do solar ovens have the greatest potential?
 ▪ Tropical latitudes, deforested/desertified regions (no woodfuel)
 o Who is likely to benefit from solar ovens?
 ▪ Those that collect firewood, cook with firewood, live in areas with no electricity/off-grid, spend a large portion of income on fuel, live in areas with contaminated water
* Create teams (3-4 in a group) to discuss ideas and research oven designs using classroom computers.

Prepare for Field Trip (5 min.)
* Regroup students to discuss logistics and objective of field trip
Session 2 - Field Trip (2 hrs.)

Visit as many of the following locations as possible in the available timeframe:
- greenhouse
- passive solar home
- home with solar collector
- home with solar hot water heater
- business that installs or builds passive solar technologies

* Home owner (or installing plumber) to explain how the home/collector uses different materials for absorption, conduction, convection and insulation of radiant solar energy.
* Owner explains reasons for building/installing passive solar system (cost, greenhouse gas emissions, local solar window, rebates/tax subsidies).
* Students will identify flow and transfer of energy in the greenhouse/home/collector and relate to the First Law of Thermodynamics.

Session 3 (1½ hrs.) “DAY 1” in student packet

Review field trip and passive solar technologies for the home (5 min)

Heat and Light Energy (25 min.)
* Define for students the following terms related to light energy, using examples or demos where appropriate (laser pointer, flashlight, prisms, mirrors):
 - transmission
 - reflection
 - refraction
* Define for students the following terms related to heat, using examples or demos where appropriate (hot water, copper pipe, candle, teabag, metal and wooden spoons):
 - radiation
 - absorption
 - conduction/insulation
 - convection

Solar Oven Design (60 min.) “DAY 1” in student packet
* Distribute worksheet packet for guidance. Allow students to ask questions and clarify expectations and specifications.
* Students group into teams to share ideas and continue online research of design plans.
* Teams draft design plans.
* Teams choose recipes.
* Teams generate supply lists and may start gathering materials.
* Collect worksheet packets, checking for design plans, supply lists and recipe information.
Session 4 (45 min.) “DAY 2” in student packet

Review Concepts (10 min)
* Review vocabulary while presenting construction materials available to students. Ask students to identify materials that will transmit, reflect or refract light, and will absorb, transmit, conduct/insulate heat.

Solar Oven Construction (35 min)
* Review safety and clean-up procedures for utility knives, paint and brushes, etc.
* Go over design plans of each group before they begin construction.
* Students work with teams to build ovens.

Session 5 (45 min.) “DAY 3” in student packet – SUNNY WEATHER NECESSARY!

Solar Oven Test (20 min)
* Students finish final construction on oven prototypes.
* Students set-up ovens with 250mL water and oven thermometers.
* Students use timers to record temperature on worksheet every 3 minutes.

Solar Oven Analysis (20 min)
* Students use Google Spreadsheets to plot time vs. temperature data
* Teams analyze their data and the performance of their oven.
* Teams adjust and revise oven designs for cooking usage.

Prepare for Solar Cooking (5min)
* Collate teams’ data to discuss overall patterns/trends in the data and possible causes.
* As a class, analyze the graphs generated by the tests.
* Discuss the problems and solutions various groups encountered.
* Have teams organize themselves for cooking the next day (one person to set up oven, one person to check at lunch, etc.)

Session 6 (45 min) “DAY 4” in student packet – SUNNY WEATHER NECESSARY!

Solar Cooking (20 min)
* Before school, meet with students in kitchen to prepare ingredients and set-up ovens.
* At the lunch break, meet with students to reposition and check on ovens.
* At class time (2:00 PM), bring in ovens and serve food.
* Identify lessons learned and adjustments made during the cooking process.
* Clean up!!!

Solar Oven Evaluation and Energy Diagram (20 min)
* Allow students to eat food while working in groups to work on energy diagrams and evaluation (to be completed for homework).
Assessments
• Verbal check-ins for understanding through open-ended questions during class discussions, and with individuals during group work time.
• Worksheet packet to be assessed throughout the design process.
• Solar ovens to be displayed with energy diagrams at Science Expo later in school year
• Evaluation essay submitted online for comments and grading.
• Test on Laws of Thermodynamics and energy transfers at conclusion of unit.

Resources
- http://solarcooking.org/plans/
- http://www.solarcookers.org/
- http://journeytoforever.org/sc.html
- http://solarcooking.wikia.com/wiki/Classroom_resources
- http://www.re-energy.ca/solar-oven-challenge/recipes
DESIGN CHALLENGE

Design an efficient solar cooker that will reach the hottest temperature in the shortest amount of time.

- Heat water to 60°C (to pasteurize disease-causing microbes)
- Heat water to 100°C (to cook food with steam)
- Heat water to 175°C (to bake food)

INSTRUCTIONS

DAY 1

- Review examples of solar ovens and discuss how each type might work, advantages/disadvantages of each design.
- Design your oven – create a detailed, labeled diagram of your plan.
- Select a recipe to prepare in your oven.

DAY 2

- Identify and prepare the vessel you will use to heat water/food in your oven.
- Construct shape out of cardboard/foam.
- Coat interior and exterior with paper/paint/foil.

DAY 3

- Position water vessel and thermometer into oven.
- Test oven for 15 minutes in full sun; record and graph data.
- Assess prototype, redesign and improve oven.

DAY 4

- Before school, prepare food ingredients and set up oven.
- At lunchtime, check on and adjust position of oven.
- During classtime, serve and eat cooked food!
- Write an evaluation of your solar oven design.
- Create an energy diagram for your oven.
PLAN FOR YOUR SOLAR OVEN

Specifications:

* Must be able to hold 250 mL of water and oven thermometer.
* Must be able to remain upright and stable in outdoor field for 6 hours.
* Be reusable and cost-effective.
* Include materials for light transmission/refraction/reflection, heat absorption/conduction, insulation.
RECIPE FOR SOLAR COOKING

FOOD: ______________________________ http://www.re-energy.ca/solar-oven-challenge/recipes
Ingredients:

Cooking Directions:

SOLAR OVEN MATERIALS

List the supplies you use to construct your oven, and their approximate costs.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Cost</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COST</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOLAR OVEN TEST

Day 3

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Temperature (Celsius)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↑ *Graph these data using a Google Spreadsheet*

Describe the results of your test:

List specific strengths of your design:
- ✪
- ✪
- ✪

List specific weaknesses of your design:
- ✗
- ✗
- ✗

Describe any adjustments made to your oven and rationale:
SOLAR OVEN ENERGY DIAGRAM Day 4

Draw at least two views of your solar cooker (bird’s eye/cross-section/side/orthographic)
Indicate the following using arrows or waves:
* Heat energy (radiation/convection/conduction/insulation)
* Light energy (reflection/transmission/absorption)
Label everything!
Be neat: use a ruler, pencil and eraser, and large, clean sheets of paper.

SOLAR OVEN EVALUATION

Share your group’s evaluation of your solar oven using Google Drive.

* Describe in your own words how your oven transfers solar energy into cooked food. Explain how this demonstrates the First Law of Thermodynamics.
* How easy or simple is your solar oven to build? Approximate the cost to build the oven. Is this cost accessible to people in need of solar ovens?
* Identify and explain any problems or difficulties you encountered in using your solar oven to cook food. How did (or could) you solve them?
* What difficulties would you expect other people might encounter if they were relying on a solar oven for food or pasteurized water? How might they overcome them?
* In your opinion, what are the most important reasons or best uses of solar ovens? (For this question, each group member should contribute their own response.)
<table>
<thead>
<tr>
<th>Category</th>
<th>Item</th>
<th>Qty.</th>
<th>Cost per</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection/Refraction</td>
<td>aluminum foil</td>
<td>8 rolls</td>
<td>$7.39</td>
<td>$59.12</td>
</tr>
<tr>
<td></td>
<td>reflective plastic</td>
<td>1 roll</td>
<td>$21.95</td>
<td>$21.95</td>
</tr>
<tr>
<td></td>
<td>silver paint</td>
<td>1 can</td>
<td>$22.56</td>
<td>$22.56</td>
</tr>
<tr>
<td></td>
<td>silver duct tape</td>
<td>4 rolls</td>
<td>$2.70</td>
<td>$10.80</td>
</tr>
<tr>
<td></td>
<td>mirrors</td>
<td>4 n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>magnifiers</td>
<td>4 n/a</td>
<td>n/a</td>
<td>$0.00</td>
</tr>
<tr>
<td>Insulation</td>
<td>cardboard boxes</td>
<td>8 n/a</td>
<td>n/a</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>foam insulation 4x8x0.5"</td>
<td>4 sheets</td>
<td>$10.95</td>
<td>$43.80</td>
</tr>
<tr>
<td></td>
<td>newspaper</td>
<td>n/a</td>
<td>n/a</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>packing peanuts</td>
<td>n/a</td>
<td>n/a</td>
<td>$0.00</td>
</tr>
<tr>
<td>Absorption</td>
<td>black kraft paper</td>
<td>1 roll</td>
<td>$27.99</td>
<td>$27.99</td>
</tr>
<tr>
<td></td>
<td>black paint</td>
<td>4 cans</td>
<td>$3.76</td>
<td>$15.04</td>
</tr>
<tr>
<td></td>
<td>black duct tape</td>
<td>4 rolls</td>
<td>$3.57</td>
<td>$14.28</td>
</tr>
<tr>
<td>Cooking</td>
<td>aluminum baking pans</td>
<td>8</td>
<td>$0.44</td>
<td>$3.52</td>
</tr>
<tr>
<td></td>
<td>food ingredients</td>
<td>8 recipes</td>
<td>$40.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oven mitts</td>
<td>4</td>
<td>$6.00</td>
<td>$24.00</td>
</tr>
<tr>
<td></td>
<td>jars, bottles, cans</td>
<td>8 each</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Transmission</td>
<td>plexiglass 12x12"</td>
<td>8 cut sheets</td>
<td>$8.99</td>
<td>$71.92</td>
</tr>
<tr>
<td></td>
<td>plastic wrap</td>
<td>4 rolls</td>
<td>$3.19</td>
<td>$12.76</td>
</tr>
<tr>
<td></td>
<td>oven bags</td>
<td>2 boxes</td>
<td>$1.25</td>
<td>$2.50</td>
</tr>
<tr>
<td>Construction</td>
<td>white glue</td>
<td>8 bottles</td>
<td>$0.88</td>
<td>$7.04</td>
</tr>
<tr>
<td></td>
<td>glue guns and sticks</td>
<td>4</td>
<td>$9.00</td>
<td>$36.00</td>
</tr>
<tr>
<td></td>
<td>utility knives</td>
<td>4</td>
<td>$6.65</td>
<td>$26.60</td>
</tr>
<tr>
<td></td>
<td>paint brushes</td>
<td>8</td>
<td>$4.89</td>
<td>$39.12</td>
</tr>
<tr>
<td></td>
<td>rulers</td>
<td>8 n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>scissors</td>
<td>8 n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Measurement</td>
<td>oven thermometers</td>
<td>8</td>
<td>$4.00</td>
<td>$32.00</td>
</tr>
<tr>
<td></td>
<td>timers</td>
<td>8</td>
<td>$6.95</td>
<td>$55.60</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$566.60</td>
</tr>
</tbody>
</table>
DESIGN CHALLENGE

Design an efficient solar cooker that will reach the hottest temperature in the shortest amount of time.

- Heat water to 60°C (to pasteurize disease-causing microbes)
- Heat water to 100°C (to cook food with steam)
- Heat water to 175°C (to bake food)

INSTRUCTIONS

DAY 1

- Review examples of solar ovens and discuss how each type of might work, advantages/disadvantages of each design.
- Design your oven – create a detailed, labeled diagram of your plan.
- Select a recipe to prepare in your oven.

DAY 2

- Identify and prepare the vessel you will use to heat water/food in your oven.
- Construct shape out of cardboard/foam.
- Coat interior and exterior with paper/paint/foil.

DAY 3

- Position water vessel and thermometer into oven.
- Test oven for 15 minutes in full sun; record and graph data.
- Assess prototype, redesign and improve oven.

DAY 4

- Before school, prepare food ingredients and set up oven.
- At lunchtime, check on and adjust position of oven.
- During classtime, serve and eat cooked food!
- Write an evaluation of your solar oven design.
- Create an energy diagram for your oven.
PLAN FOR YOUR SOLAR OVEN

Specifications:

* Must be able to hold 250 mL of water and oven thermometer.
* Must be able to remain upright and stable in outdoor field for 6 hours.
* Be reusable and cost-effective.
* Include materials for light transmission/refraction/reflection, heat absorption/conduction, insulation.
RECIPE FOR SOLAR COOKING

FOOD: ______________________________ http://www.re-energy.ca/solar-oven-challenge/recipes

Ingredients:

Cooking Directions:

SOLAR OVEN MATERIALS

List the supplies you use to construct your oven, and their approximate costs.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Cost</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL COST
SOLAR OVEN TEST Day 3

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Temperature (Celsius)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph these data using a Google Spreadsheet

Describe the results of your test:

List specific strengths of your design:

✪
✪
✪

List specific weaknesses of your design:

✖
✖
✖

Describe any adjustments made to your oven and rationale:
SOLAR OVEN ENERGY DIAGRAM

Day 4

Draw at least two views of your solar cooker (bird’s eye/cross-section/side/orthographic)

Indicate the following using arrows or waves:

- Heat energy (radiation/convection/conduction/insulation)
- Light energy (reflection/transmission/absorption)

Label everything!

Be neat: use a ruler, pencil and eraser, and large, clean sheets of paper.

SOLAR OVEN EVALUATION

* Share your group’s evaluation of your solar oven using Google Drive.

* Describe in your own words how **your** oven transfers solar energy into cooked food. Explain how this demonstrates the First Law of Thermodynamics.

* How easy or simple is your solar oven to build? Approximate the cost to build the oven. Is this cost accessible to people in need of solar ovens?

* Identify and explain any problems or difficulties you encountered in using your solar oven to cook food. How did (or could) you solve them?

* What difficulties would you expect other people might encounter if they were relying on a solar oven for food or pasteurized water? How might they overcome them?

* In **your** opinion, what are the most important reasons or best uses of solar ovens? (For this question, each group member should contribute their own response.)
<table>
<thead>
<tr>
<th>Category</th>
<th>Item</th>
<th>Qty.</th>
<th>Cost per</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection/Refraction</td>
<td>aluminum foil</td>
<td>8</td>
<td>$7.39</td>
<td>$59.12</td>
</tr>
<tr>
<td></td>
<td>reflective plastic</td>
<td>1</td>
<td>$21.95</td>
<td>$21.95</td>
</tr>
<tr>
<td></td>
<td>silver paint</td>
<td>1</td>
<td>$22.56</td>
<td>$22.56</td>
</tr>
<tr>
<td></td>
<td>silver duct tape</td>
<td>4</td>
<td>$2.70</td>
<td>$10.80</td>
</tr>
<tr>
<td></td>
<td>mirrors</td>
<td>4</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>magnifiers</td>
<td>4</td>
<td>n/a</td>
<td>$0.00</td>
</tr>
<tr>
<td>Insulation</td>
<td>cardboard boxes</td>
<td>8</td>
<td>n/a</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>foam insulation 4x8x0.5</td>
<td>4</td>
<td>$10.95</td>
<td>$43.80</td>
</tr>
<tr>
<td></td>
<td>newspaper</td>
<td>n/a</td>
<td>n/a</td>
<td>$0.00</td>
</tr>
<tr>
<td></td>
<td>packing peanuts</td>
<td>n/a</td>
<td>n/a</td>
<td>$0.00</td>
</tr>
<tr>
<td>Absorption</td>
<td>black kraft paper</td>
<td>1</td>
<td>$27.99</td>
<td>$27.99</td>
</tr>
<tr>
<td></td>
<td>black paint</td>
<td>4</td>
<td>$3.76</td>
<td>$15.04</td>
</tr>
<tr>
<td></td>
<td>black duct tape</td>
<td>4</td>
<td>$3.57</td>
<td>$14.28</td>
</tr>
<tr>
<td>Cooking</td>
<td>aluminum baking pans</td>
<td>8</td>
<td>$0.44</td>
<td>$3.52</td>
</tr>
<tr>
<td></td>
<td>food ingredients</td>
<td>8</td>
<td>n/a</td>
<td>$40.00</td>
</tr>
<tr>
<td></td>
<td>oven mitts</td>
<td>4</td>
<td>$6.00</td>
<td>$24.00</td>
</tr>
<tr>
<td></td>
<td>jars, bottles, cans</td>
<td>8</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Transmission</td>
<td>plexiglass 12x12"</td>
<td>8</td>
<td>$8.99</td>
<td>$71.92</td>
</tr>
<tr>
<td></td>
<td>plastic wrap</td>
<td>4</td>
<td>$3.19</td>
<td>$12.76</td>
</tr>
<tr>
<td></td>
<td>oven bags</td>
<td>2</td>
<td>$1.25</td>
<td>$2.50</td>
</tr>
<tr>
<td>Construction</td>
<td>white glue</td>
<td>8</td>
<td>$0.88</td>
<td>$7.04</td>
</tr>
<tr>
<td></td>
<td>glue guns and sticks</td>
<td>4</td>
<td>$9.00</td>
<td>$36.00</td>
</tr>
<tr>
<td></td>
<td>utility knives</td>
<td>4</td>
<td>$6.65</td>
<td>$26.60</td>
</tr>
<tr>
<td></td>
<td>paint brushes</td>
<td>8</td>
<td>$4.89</td>
<td>$39.12</td>
</tr>
<tr>
<td></td>
<td>rulers</td>
<td>8</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>scissors</td>
<td>8</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Measurement</td>
<td>oven thermometers</td>
<td>8</td>
<td>$4.00</td>
<td>$32.00</td>
</tr>
<tr>
<td></td>
<td>timers</td>
<td>8</td>
<td>$6.95</td>
<td>$55.60</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$566.60</td>
</tr>
</tbody>
</table>