Wind Turbines

Presented by the West Lafayette Wind Crew

Aidan Gifford
Kristyn Webb
Kaitlin Tucci
Lauren Sailor
Grace Linesch
Caleb Sedam
Grant Greene
Carson Jenkins
Kyle Jones
Kendall Mason
Problem Statement

With wind energy projected to contribute 20% of the world’s renewable energy market by 2030 we must use a more quiet, efficient, durable, cost effective, and environmentally friendly way to convert wind to electricity.

Projected growth in electricity consumption by 2030: 50%
Aerodynamics Lab Experiment

- Experiment was conducted to understand the relationship of angle of attack and speed to the lift generated for a wing section in a wind tunnel
- Carried out flow visualization experiments with dye over a wing section and other objects like sphere and cylinder
- Used a program designed by a PhD student Zachary Adams to find an optimum configuration for the orientation of blade in a vertical axis wind turbine

Model of wind tunnel

Program used to project efficiency of Vertical Axis Wind Turbines
Aerodynamics

Horizontal Axis Wind Turbine
- Drag depends on angle (pitch)
- Larger angles are rarely used
- Creates more pressure
- Causes ends to curl
- Leading edge creates most
- Airfoil shoulder

Vertical Axis Wind Turbine
- Pitch constantly changes, making it hard to model
- Efficiency can be boosted by placing the turbines close to each other because the displaced air of the blades increases drag for the blades of nearby turbines
- Uses drag from the wind to create energy
Applications and Output

Horizontal:
- Best in large, remote installations, for feeding into the grid
- Require a large, open area to operate at maximum efficiency
- Best operate in areas with constant wind direction
- Average turbine produces 2.5-3.5 megawatts

Vertical:
- Best in private installations for residential usage
- Need little area to run
- Can operate in irregular winds, but such changes cut down on efficiency
- Average turbine produces 500-1000 watts
Cost and Maintenance

Horizontal Axis Wind Turbines
- Operation and maintenance costs are 10 - 35% of the cost of the turbine
- Maintenance is costly and complicated

Vertical Axis Wind Turbines
- Cheaper to manufacture
- Secondary costs total 15-30%
- Low storm damage
- Cheaper maintenance
- $10,500 - $17,500
- 1,962 - 3,362 kW hr / yr
Environmental Effects

- Old blades are dumped in landfills
- Cement factories reuse the old blades
- Vertical and Horizontal blades give off zero emissions
- Made of Glass Reinforced Fiber Plastic or Carbon Fiber
- Noise of Vertical Turbines compared to Horizontal turbines
- Birds and Bats can get caught in Horizontal turbines much easier
- Windmills can harbor poisonous snakes
Policy Questions

- Wind power of Indiana compared to other countries
- Growth of wind power compared to other renewable energy sources
- Future of wind power
- "Not In My Backyard" Politics

Amount of wind power in 1997

Amount of wind power in 2013
Social Impact

Horizontal Turbine
- Block the view
- Also blocks radar and telecommunications (less of a concern in developing nations)
- High short term employment
- More energy for use

Vertical Turbines
- Does not block radar or telecommunications
- Does not block view
- Small market (small market = little employment)
- Energy for single homes and small villages (developing nations)
Thank You Duke Energy Academy at Purdue!
References

