Directions

You will prepare a lesson plan on the content topic of energy to implement in your classroom setting. The lesson has no specific page limit or length in order to meet your individual needs. Your lesson must meet the 18 criteria listed and you must have it checked for feedback by one of our Master Teachers. After receiving their approval, your lesson will be posted on the Duke Energy Academy website.

Information is posted on the Duke Energy Academy website that will assist you with background information and provide you with sample lesson ideas. You will also want to read the book from the National Science Teachers Association (NSTA) provided by the Duke Energy Academy entitled, “Translating the NGSS for Classroom Instruction,” by Rodger W. Bybee. Your lesson plan must be in a final version by Thursday, June 26 at 8:00 PM EDT.

After you return to your school in the Fall, you will need to inform us via email when you will be teaching your lesson. Members of the Duke Energy Academy will plan to visit a sample of participants from the program this summer to observe your lesson in action.

Your master teacher teaching team DEAP members:

Jerry Krockover, Professor of Science Education, Purdue University W. Lafayette, IN

Nancy Franke, Teacher, St. Peter’s Lutheran School, Columbus, IN

Anne Dick, Maconaquah High School, Bunker Hill, IN

Margie Dobler, South Adams Schools, Berne, IN
Checklist for STEM Energy Lesson Plan Elements Inclusion
Purdue University
Duke Energy Academy

Name__________________ School____________________ Grade Level(s)______________

Lesson Plan Title__

1. Incorporating Next Generation Science Standards, Common Core, or State Standards

2. Project Based Learning ______

3. Asking questions and defining problems ______

4. Community connections ______

5. Obtaining and evaluating information ______

6. Planning and carrying out investigations ______

7. Developing and using models ______

8. Use of technology and software ______

9. Collaboration ______

10. Critical thinking ______

11. Creativity ______

12. Communication ______

13. Using mathematics and computational thinking ______

14. Analyzing and interpreting data ______

15. Constructing explanations and designing solutions ______

16. Engaging in argument from evidence ______

17. Assessment Plan ______

18. Implementation plan with resources (supplies and estimated cost) needed ______

(4-14-14 Version)