Production Issues and Fischer-Tropsch Commercialization

A presentation to the Advisory Panel of The Indiana Center for Coal Technology Research

Fabio Ribeiro
School of Chemical Engineering
College of Engineering

Hilkka Kenttämaa
Department of Chemistry
College of Science

Terre Haute
June 1, 2006
Coal To Liquids, CTL

Molecular level characterization of F-T fuels needed to establish relationships between fuel composition and

- Fischer Tropsch reaction conditions
- Fuel refining methods
- Fuel performance in engines
F-T Fuel Characterization

- No commercial methodology exists for detailed characterization of very complex hydrocarbon mixtures.
- Hence, new analytical methods must be developed for F-T-fuel analysis.
- These special methodologies are best implemented on ultra-high resolution mass spectrometry because of the molecular complexity of the fuels.
• Most promising analytical approach:
 - Laser-induced acoustic desorption (developed at Purdue)
 - Ionization with chemical reactions specifically developed to ionize hydrocarbons without fragmentation
 - Ultra-high resolution FT-ICR mass spectrometry

• First steps:
 - Test the existing methodology (medium-resolution)
 - Use existing F-T fuels

• Goals:
 - Determine the critical areas (in addition to resolution) that need improvement for complete F-T fuel characterization
• **Goals:**
 - Make initial correlations between fuel’s molecular composition and performance information obtained by the **engine testing group**
 - This information will aid the **F-T production group** in optimization of the selectivity of the F-T process
 - Preliminary characterization of F-T fuels generated by the **production group** will lead to initial correlations between the fuel composition and F-T catalyst composition and reaction conditions

All the above correlations must be re-evaluated when analytical procedures have been developed for complete F-T fuel characterization
Production of F-T Fuels:
Four major focus areas identified

- Optimizing Selectivity
- Fischer-Tropsch Mechanism
- Integration of F-T Mechanism with reactant consumption and product distribution
- CO₂ recycle
Implications of CTL Integration

Our idea is to develop the facility to quickly add new chemistries to a full plant model so we can immediately understand their implications to the final product cost
Optimizing Selectivity

- Selectivity: single-most important parameter
- Selectivity: complex function of various parameters
- Desired product either diesel range linear paraffins or olefins (high reactivity)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Chain Length</th>
<th>Chain Branching</th>
<th>Olefin Sel</th>
<th>Alcohol Sel</th>
<th>Carbon Dep</th>
<th>Methane Sel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>↓</td>
<td>↑</td>
<td>*</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Pressure</td>
<td>↑</td>
<td>↓</td>
<td>*</td>
<td>↑</td>
<td>*</td>
<td>↓</td>
</tr>
<tr>
<td>(H_2/CO)</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>Conversion</td>
<td>*</td>
<td>*</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Space Velocity</td>
<td>*</td>
<td>*</td>
<td>↑</td>
<td>↑</td>
<td>*</td>
<td>↓</td>
</tr>
</tbody>
</table>
Integration of F-T Mechanism with Reactant Consumption and Product Distribution

• None of the available models are accurate enough
• Lack of reliable kinetic equations for all products
• Models combining overall consumption of reactants and product distribution are scarce in the literature