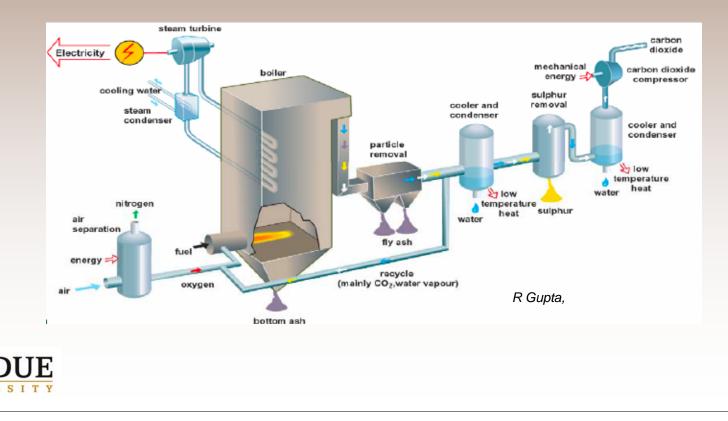
Oxy-Fuel Combustion: Clean Coal

Dr. Steve Son Mr. Kevin Cramer (Ph.D. Student)

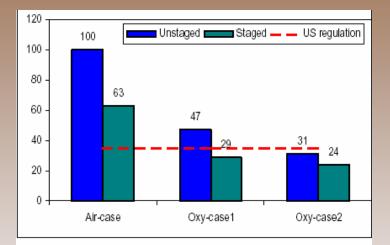
Multiphase Combustion Laboratory Mechanical Engineering Purdue University June 5, 2007



What is oxy-fuel combustion?

- Oxy-Fuel
 - Pure oxygen as oxidizer
 - Reduces or eliminates NOx

- Increases CO₂
 concentration
 - Easier to recover



-Could be used in retrofit coal plants

Previous Oxy-Fuel Studies

Pollutants

- $-NO_x$ reduced
 - Can be further reduced
- CO₂ concentrated >90%

(a) NOx emissions, normalised assuming the baseline value in air-case is 100. Dash line is US regulation 65 mg/MJ

Oxy-fuel combustion in GHG Context – Status of Research, Technology and Assessment R Gupta, CRC for Coal in Sustainable Developement Univ of Newcastle Australia Advanced Coal Workshop, Brigham Young University, Provo,Utah, 15-16th March 2005

Previous Oxy-Fuel Studies

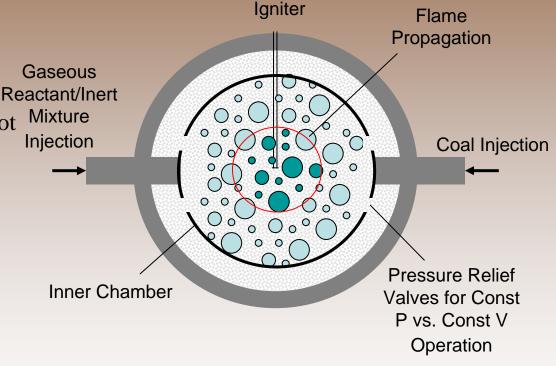
- Flame and Heat Transfer
 - Instabilities observed
 - Can be overcome by increasing O₂, but increases cost
 - Can this be overcome by recycling hot exhaust (flue) gas (RFG)? Are optimized ignition and combustion possible?
 - Heat Transfer changed
 - No NO_x, N₂, less CO to carry heat to boiler
 Transport properties changed
 - Can likely be made to matched air burning with RFG
 - Avoids changing plant electrical output

Previous Oxy-Fuel Studies

• Retrofit

- Most necessary technology is mature
 - Optimization should be only changes
- Must find a place for CO₂
 - No current large scale market
 - Must sequester and store
- Can be adapted to future technological advances
 - IGCC using air separation unit from oxy-fuel retrofit
- Pilot Studies already done
 - Companies such as Air Liquide and Alstom

We are collaborating with Jupiter Oxygen Corporation, who is retrofitting 25 MW plant in Orville, Ohio; as well as developing an oxy-fuel pilot plant in Hammond, IN



Jupiter Oxy-Fuel plant; Hammond, IN

Studies Beginning at Purdue

- Constant volume or pressure ignition and combustion
 - Flame and ignition characterization studies
 - Pollutant concentrations
 - RFG/O₂% optimization
 - Comparisons with Jupiter pilot ^N reactor ^{Ir}
 - Indiana coals considered
- Pressurized studies
 - Control flame instabilities?
 - Future technology areas?
 - IGCC pressurized syngas
 - Chemical looping

Funding from Indiana CCTR

Can hot RFG stabilize $O_2/CO_2/Coal$ flame with lower O_2 concentration?

Work Update

- Pressure Vessel Construction
 - Pressure Seal
 - Reusable and durable
 - Temperature resistant
 - Ignition
 - Matching minimum ignition energy to spark distance
 - Computer control and timing

Work Update

- Coal Feed System

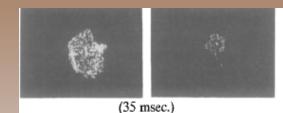
 Computer control
 Load and feed mechanism
- Pressure Release System

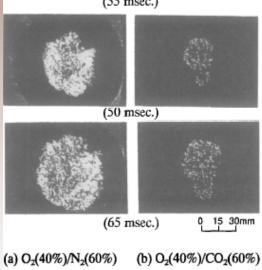
 Alignment of plates
 Friction and sealing

Proposed Industry Survey

- Purpose is to get perspective on clean coal, and specifically views on oxyfuel in Indiana
 - Technology issues (we know cost is the driver, but what else?)
 - What new concerns exist in the clean coal process have arisen?
 - Example Questions:
 - Impact of Additional System Size?
 - Importance of retrofit (historical, newer parts, etc)?
 - Importance of Ease of Operation?

Proposed Industry Survey


- Potential Contacts
 - <u>Large user:</u> Duke Energy, AEP, Indiana-Michigan Power, Indianapolis Power & Light
 - <u>Small user:</u> Logansport Municipal Utilities, Frankfort Light & Power, Crawfordsville Elec Light & Power Co, Warren County Rural E M C, Darlington Light & Power Co
 - We believe that small users will be the key consumers for Oxy-Fuel Technology (low capital cost vs. IGCC)
 - -- Examples: Babcock & Wilcox: Hamilton, OH Jupiter Oxygen: Orville, OH



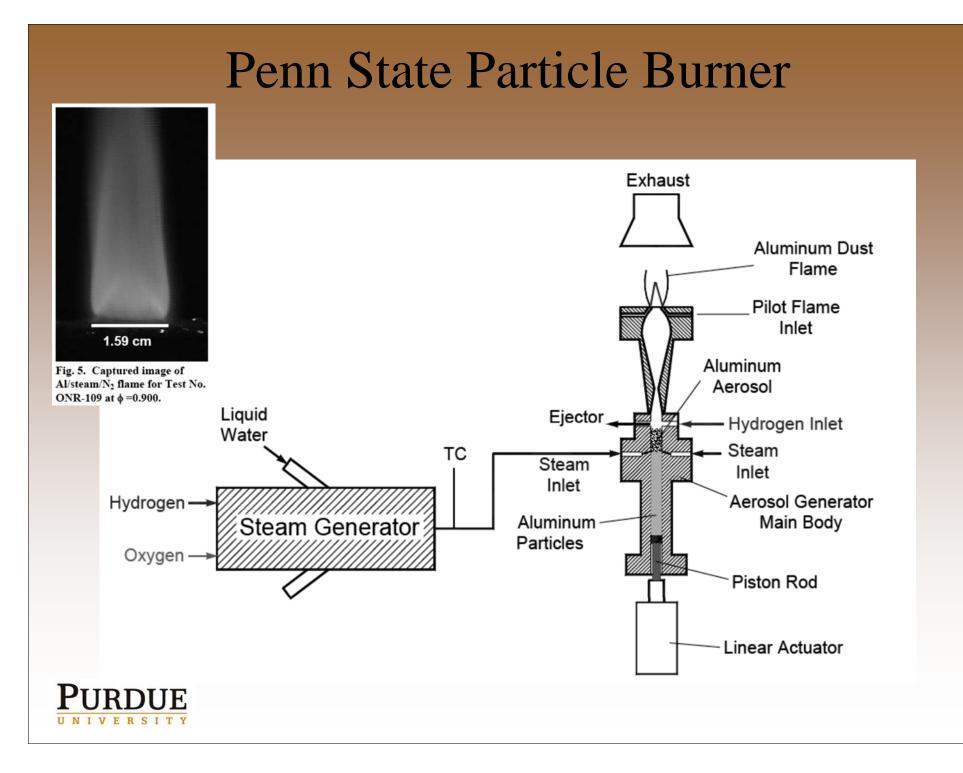
Proposed Experiments

• Flame Studies

- Instabilities in Large Coal Cloud
 - Compare to Kiga instabilities
 - Test off-optimum conditions
- Heat Transfer
 - CO₂/O₂ effects
 - Compare experimental to current/proposed models
 - Thermal radiation (w/ Jupiter)
- Emissions
 - Complete combustion in coal cloud?
 - SO₂ concentrations

Fig. 2. Flame propagation behavior.

Kiga et al.; Energy Conversion Management 1997; 38: S129-S34


Jupiter Oxygen Collaboration

- What they can offer us
 - Full size verification of laboratory observations
 - Proposed testing parameters arising in continuous operation
- What we can offer them
 - Theoretical verification of full scale occurrences
 - Data suitable for model generation
 - Use proposed parameters instead of standard
 - Unique conditions testable before implementation

Jupiter Oxygen Facility, Hammond IN

Summary of Progress

- New combustor nearly built
 - Testing to begin
- Plans made for survey
- Need to identify and obtain pulverized coal for studies
- Particle burner from Penn State shipped this week to Purdue
 - Will be adapted to coal combustion
 - Complements our combustor

