Coking/Coal Gasification
Using Indiana Coal for the
Production of Metallurgical Coke, Liquid Transportation Fuels, and Electric Power

Status Report
6/5/2007

Robert Kramer, Ph.D.
Director, Energy Efficiency and Reliability Center
Purdue University Calumet

Center for Coal Technology Research
Research Team

- Robert Kramer (Ph.D.) is Director of the Purdue University Calumet Energy Efficiency and Reliability Center. Dr. Kramer serves as the Principal Investigator. His areas of expertise include energy research, electric system design and operation, engineering, physics, Combined Heat and Power systems, environmental engineering, and project management. He has over 30 years of industrial experience in the energy field, most recently as the Chief Scientist for NiSource.

- Libbie Pelter (Ph.D.), Assistant Professor, Department of Chemistry and Physics, Purdue University Calumet. Dr. Pelter has a background in surface chemistry and catalysis from the petroleum industry.

- Harvey Abramowitz (Ph.D.), Professor, Department of Mechanical Engineering, Purdue University Calumet. Dr. Abramowitz has had extensive experience in metallurgy and steel making processes in general.

- Hardarshan Valia (Ph.D.), President, Coal Science, Inc. Dr. Valia serves as a team member and consultant to the project. He has extensive experience in the steel industry and specifically in the utilization of coal and the coking process. He also has experience with various production and economic aspects of both the coal and steel industry.

- Chenn Zhou (Ph.D.), Head of Mechanical Engineering Purdue University Calumet. Dr. Zhou is an expert in computational fluid dynamics.
Coke Oven
Coal Blending Is Key to Using Indiana Coal For Coke Production

Blend of 23% Indiana coal - 37% Eastern High Volatile (EHV) coal - 40% Eastern Medium Volatile (EMV) coal

Initial Indiana Coal Test Results

Temperature (C) vs. Volume %

- H2 (mine 1)
- CO (mine 1)
- CO2 (mine 1)
- CH4 (mine 1)
- H2 (mine 2)
- CO (mine 2)
- CO2 (mine 2)
- CH4 (mine 2)
Coke Oven Gas

- One metric ton of coal typically produces 600-800 kg of blast-furnace coke and 296-358 m³ of coke oven gas.*
- 2005 forecasts indicate that the US will produce 11,500,000 net tons of coke, but will require 17,000,000 net tons for blast furnace, foundry, and related uses.
 - At present, essentially no Indiana coal is being used for coke production. In 2002, Indiana’s steel industry used an estimated 10.7 million tons of coal.
 - 8.1 million tons was used for coke production.
 - Most from West Virginia and Virginia.

Economic and Quality Process Optimization

- Develop model that for blending coals in way that maximizes Indiana/Illinois Basin coal percentage (minimizes cost) within constraints
 - Maintain acceptable CSR levels
 - Produce pyrolysis gas streams at various temperatures that have composition suitable for producing Fischer Tropsch liquids, fertilizer, and bulk hydrogen
 - Electricity production
- Use the Model to formulate the design for a multipurpose coking facility that maximizes value for the entire process while meeting operating requirements
- Continue development of new approach to using nut coke in blast furnace operations that maximizes use of Indiana/Illinois Basin coal
Zones of a blast furnace

Figure 4: The driving force of a blast furnace: the counter current process creates voidage at the indicated areas causing the burden to descend

Source: Modern Blast Furnace Ironmaking, Verlag Stahleisen GmbH, 2004
CFD Results

Pressure Drop

a) Coke porosity = 0.5
b) Coke porosity = 0.65
c) Coke Porosity = 0.3
d) Coke dia = 0.038m
e) Coke dia = 0.06m
f) Coke dia = 0.02
CFD Results

Path lines for different coke properties

Porosity – 0.5
Coke dia – 0.038m Coke dia – 0.02m Coke dia – 0.06m Porosity – 0.3 Porosity – 0.65
Initial Test Setup
Post Initial Test
New Design
Current GC for Gas Analysis
GC for Next Testing Stage
Pyrolysis Chromatogram
CSL Pilot Oven
CSL Pilot Oven

Existing Gas port

Proposed gas port site in down comer

Proposed Gas port sites in the sole flue
Process Value Streams

- Heat Recovery & Steam Generation
- Coke
- Non Recovery Coke Plant
- Pyrolysis Gas
- Gas Turbine
- Fischer-Tropsch Processing
- Liquid Transportation Fuel
- Gas Separation
- Fertilizer & Bulk Hydrogen
- Electric Generation

Inputs:
- Indiana Coal
- Other Coal

Outputs:
- Electric Generation
- Liquid Transportation Fuel
- Fertilizer & Bulk Hydrogen
- Sequester CO2
Future Work Objectives

- Phase 2 can be started in 2007
- Additional funding required
- Ongoing discussions with potential industrial collaborators
- Develop optimization model for minimizing cost by maximizing Indiana/Illinois Basin coal use, coke properties, and value streams
- Obtain more test data for coal samples
- Start one ton oven testing
- Fischer-Tropsch unit design, construction, and installation
- Fertilizer concept development and testing
- Bulk H concept development and testing
- Consider environmental issues in more detail
- Continue discussions for potential commercialization at mine mouth (or other) multipurpose coke facility
Thank You!

Robert Kramer, Ph.D.
Director, Energy Efficiency and Reliability Center
Purdue University Calumet
219-989-2147
kramerro@calumet.purdue.edu
www.calumet.purdue.edu/energycenter