Coal Transformation: Clean Coal

Dr. Steve Son Multiphase Combustion Laboratory Mechanical Engineering Purdue University March 1, 2007

Wade Utility Plant, Purdue University

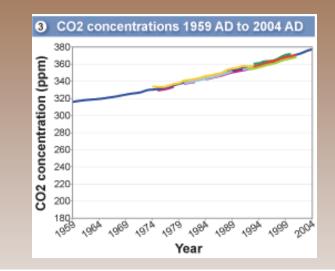
Overview

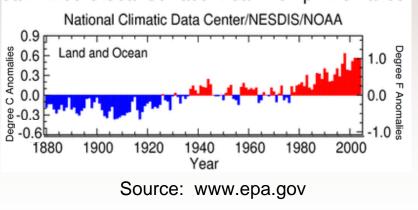
- Background
 - Environmental Concerns
 - Legislation

•Proposed Solutions & Motivation

- -IGCC
- -Oxy-Fuel
- -Scrubbing
- -Economics estimates

• What is Oxy-Fuel?


- Background
- Previous studies
- Technical issues
- Purdue Combustion Studies
 Beginning
 - Constant volume or pressure Combustion
 - Pressurized Systems
 - Future areas?
 - Chemical Looping
 - Aluminum combustion with CO₂



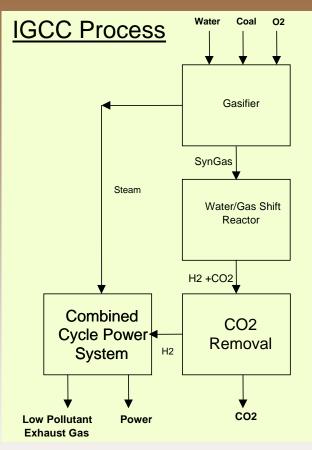
Background

• Environmental Concerns

- "Greenhouse Effect"
 has led to 1°F average
 increase over 20 years
- Current rate is 0.32°F per decade
- NO_x contributes to Acid Rain and "greenhouse effect"

Background

• Legislation


- President's Clear Skies Initiative
 - Reduce $NO_x 67\%$ from 2000 levels and $SO_2 73\%$ from 2000 levels by 2018
- Greenhouse Gas (GHG) Intensity
 - Reduce intensity (tons gas/ \$M GDP) 18% by 2012
- International Kyoto Protocol
 - UN rule to reduce GHG emissions 5% by 2012
 - Binding to countries who ratified (>55% of world emissions)

Proposed Solutions

- Longer Term
 - Nuclear
 - Alternative Energy
 - Renewable
 - Wind, Solar,
 Biofuels
- \rightarrow Coal will be used in foreseeable future
 - Coal is the most abundant domestic fuel and it remains the lowest cost fuel for power generation
- Increase Efficiency
 - Ultra Super-Critical Pulverized Coal
 - Integrated Gasification Combined Cycle (IGCC)
 - Higher Efficiency
 - Produces usable hydrogen

Nearer Term Options for Clean Coal

- Three approaches are presently seen as the front runners:
 - Oxygen combustion
 - Concentrates CO₂
 - Reduces NOx
 - Amine (or others) scrubbing for new or existing plants
 - Extracts the CO₂ from the flue gas using a regenerable sorbent-catalyst such as monoethanolamine (or MEA)
 - IGCC
 - Concentrates CO₂
 - Produces multi-use syngas
 - "Some current studies show oxygen combustion as the least costly while others lean toward IGCC, indicating that the jury is still out." (Williams et al., BR-1779, 2006)

- Many uncertainties still exist when comparing costs of new technologies
 - Scales

– Lost Energy Costs

– Availability of Technology

- Disposal/salvage Costs

- Repair costs
- However, taking published studies on cost data and comparing to real world numbers, the following calculations result:

Capital Costs		Annual Cost	Total cost (400 MW)	
Method	(\$/MW)	(\$/ {year * MW})	(\$ for year 1)	
Amine	\$899,297	\$257,496	\$462,717,326.84	
Oxyfuel	\$966,663	\$220,878	\$475,016,480.26	
IGCC	\$1,483,840	\$192,750	\$670,636,013.14	

Notes:

- 1) All numbers in \$US 2006
- 2) Amine & Oxyfuel are retrofit costs, IGCC is new plant
- 3) 20 years is the assumed life of retrofitted plant

References:

Smith LA, Gupta N, Sass BM, Bubenik T, Byer C, Bergman P. "Engineering and economic assessment of carbon dioxide sequestration in saline formations." Journal of Energy and Environmental Research 2002; 2:5–22.

Singh D, Croiset E, Douglas PL, Douglas MA. "Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing Vs. O2/CO2 recycle combustion." Energy Conversion Management 2003;44:3073–91.

- What does this mean to Indiana?
 - Costs of revamping "The Big 10" estimated
 - 50 years assumed as life of plant
 - Retrofits include boiler and turbine refurbishment at 50 years from original boiler install

	Design Output (MW)	Amine Retrofit Cost	Oxyfuel Retrofit Cost	IGCC Replacement Cost
Gibson	3340	\$16,520,853,638	\$10,630,647,234	\$15,811,025,710
Tanner's Creek	1099	\$5,436,053,338	\$3,497,928,536	\$5,202,490,196
Rockport	1300	\$6,430,272,374	\$4,137,677,067	\$6,153,992,043
Schahfer	2200	\$10,881,999,402	\$7,002,222,729	\$10,414,448,072
Petersburg	1880	\$9,299,163,125	\$5,983,717,605	\$8,899,619,262
Clifty Creek	1300	\$6,430,272,374	\$4,137,677,067	\$6,153,992,043
Cayuga	1193	\$5,901,011,494	\$3,797,114,416	\$5,647,471,159
Merom	1080	\$5,342,072,434	\$3,437,454,794	\$5,112,547,235
Stout/Harding St.	1185	\$5,861,440,587	\$3,771,651,788	\$5,609,600,439
Wabash River	668	\$3,304,170,728	\$2,126,129,447	\$3,162,205,142

Without fuel costs

With fuel costs

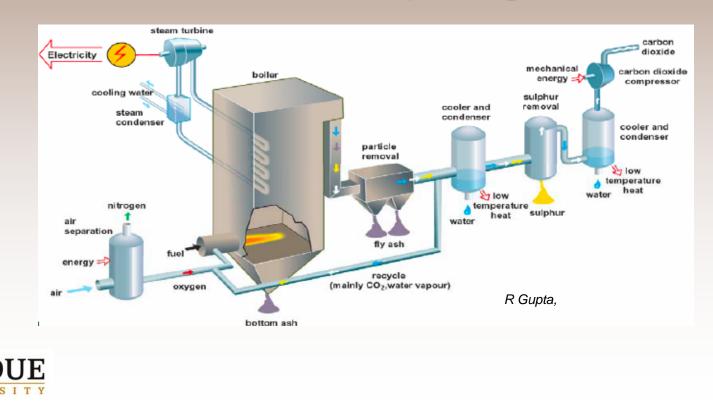
	Design Output (MW)	Amine Retrofit Cost	Oxyfuel Retrofit Cost	IGCC Replacement Cost
Gibson	3340	\$47,729,813,638	\$41,839,607,234	\$37,145,275,710
Tanner's Creek	1099	\$15,705,109,338	\$13,766,984,536	\$12,222,352,696
Rockport	1300	\$18,577,472,374	\$16,284,877,067	\$14,457,742,043
Schahfer	2200	\$31,438,799,402	\$27,559,022,729	\$24,466,948,072
Petersburg	1880	\$26,865,883,125	\$23,550,437,605	\$20,908,119,262
Clifty Creek	1300	\$18,577,472,374	\$16,284,877,067	\$14,457,742,043
Cayuga	1193	\$17,048,403,494	\$14,944,506,416	\$13,267,758,659
Merom	1080	\$15,433,592,434	\$13,528,974,794	\$12,011,047,235
Stout/Harding St.	1185	\$16,934,080,587	\$14,844,291,788	\$13,178,787,939
Wabash River	668	\$9,545,962,728	\$8,367,921,447	\$7,429,055,142

- What if 50 years isn't realistic?
 - Assume Boiler and turbine retrofits are not necessary

	Design Output (MW)	Amine Retrofit Cost	Oxyfuel Retrofit Cost	IGCC Replacement Cost	
Gibson	3340	\$15,904,217,953	\$14,294,657,503	\$14,612,800,710	
Tanner's Creek	1099	\$5,233,154,350	\$4,703,541,496	\$4,808,223,946	
Rockport	1300	\$6,190,264,473	\$5,563,788,848	\$5,687,617,043	
Schahfer	2200	\$10,475,832,185	\$9,415,642,666	\$9,625,198,072	
Petersburg	1880	\$8,952,074,776	\$8,046,094,642	\$8,225,169,262	With fuel / 15 years
Clifty Creek	1300	\$6,190,264,473	\$5,563,788,848	\$5,687,617,043	
Cayuga	1193	\$5,680,758,089	\$5,105,846,228	\$5,219,482,409	
Merom	1080	\$5,142,681,254	\$4,622,224,582	\$4,725,097,235	
Stout/Harding St.	1185	\$5,642,664,154	\$5,071,607,527	\$5,184,481,689	
Wabash River	668	\$3,180,843,591	\$2,858,931,501	\$2,922,560,142	

	Design Output (MW)	Amine Retrofit Cost	Oxyfuel Retrofit Cost	IGCC Replacement Cost	
Gibson	3340	\$20,204,406,622	\$17,983,325,321	\$17,831,725,710	
Tanner's Creek	1099	\$6,648,096,670	\$5,917,267,823	\$5,867,385,196	
Rockport	1300	\$7,863,990,601	\$6,999,497,880	\$6,940,492,043	
Schahfer	2200	\$13,308,291,787	\$11,845,304,104	\$11,745,448,072	
Petersburg	1880	\$11,372,540,254	\$10,122,350,780	\$10,037,019,262	
Clifty Creek	1300	\$7,863,990,601	\$6,999,497,880	\$6,940,492,043	With fuel / 20 years
Cayuga	1193	\$7,216,723,683	\$6,423,385,362		
Merom	1080	\$6,533,161,423	\$5,814,967,469	\$5,765,947,235	
Stout/Harding St.	1185	\$7,168,329,894	\$6,380,311,529	\$6,326,525,439	
Wabash River	668	\$4,040,881,324	\$3,596,665,064	\$3,566,345,142	42

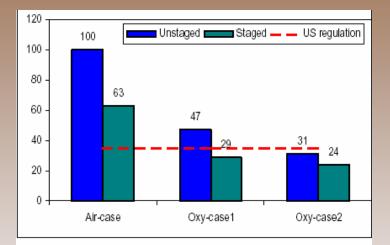
- If IGCC somewhat cheaper (for 50 years & many assumptions), why oxy-fuel?
 - Cost of retraining operators for IGCC not included
 - IGCC operation is more complex
 - Air separation units purchased for Oxy-fuel retrofit could be used later on IGCC replacements
 - Can lower future necessary capital funds
 - IGCC startup costs much larger
 - Oxy-fuel capital is 65% less
 - IGCC technology and experience improving, so oxy-fuel retrofit followed at some point by IGCC replacement may be better in some cases
 - If oxy-fuel boiler & turbine are upgraded to higher performance (efficiencies), less fuel would be used and the system would be more competitive with IGCC
 - For example, could utilize higher temperatures from oxygen combustion instead of using recycled flue gases to match original design


What exactly is oxy-fuel?

- Oxy-Fuel
 - Pure oxygen as oxidizer
 - Reduces or eliminates NOx

Increases CO₂
 concentration

• Easier to recover


-Can be used in retrofit coal plants

Previous Oxy-Fuel Studies

Pollutants

- $-NO_x$ reduced
 - Can be further reduced
- $-CO_2$ concentrated >90%

(a) NOx emissions, normalised assuming the baseline value in air-case is 100. Dash line is US regulation 65 mg/MJ

Oxy-fuel combustion in GHG Context – Status of Research, Technology and Assessment R Gupta, CRC for Coal in Sustainable Developement Univ of Newcastle Australia Advanced Coal Workshop, Brigham Young University, Provo,Utah, 15-16th March 2005

Previous Oxy-Fuel Studies

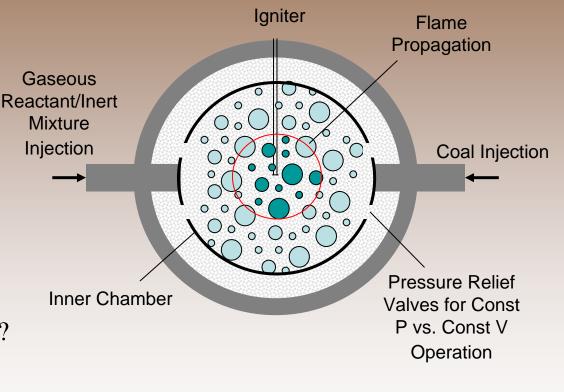
- Flame and Heat Transfer
 - Instabilities observed
 - Can be overcome by increasing O₂, but increases cost
 - Can this be overcome by recycling hot exhaust (flue) gas (RFG)? Are optimized ignition and combustion possible?
 - Heat Transfer changed
 - No NO_x, N₂, less CO to carry heat to boiler
 Transport properties changed
 - Can likely be made to matched air burning with RFG
 - Avoids changing plant electrical output

Previous Oxy-Fuel Studies

• Retrofit

- Most necessary technology is mature
 - Optimization should be only changes
- Must find a place for CO₂
 - No current large scale market
 - Must sequester and store
- Can be adapted to future technological advances
 - IGCC using air separation unit from oxy-fuel retrofit
- Pilot Studies already done
 - Companies such as Air Liquide and Alstom

We are collaborating with Jupiter Oxygen Corporation, who is retrofitting 25 MW plant in Orville, Ohio; as well as developing an oxy-fuel pilot plant in Hammond, IN

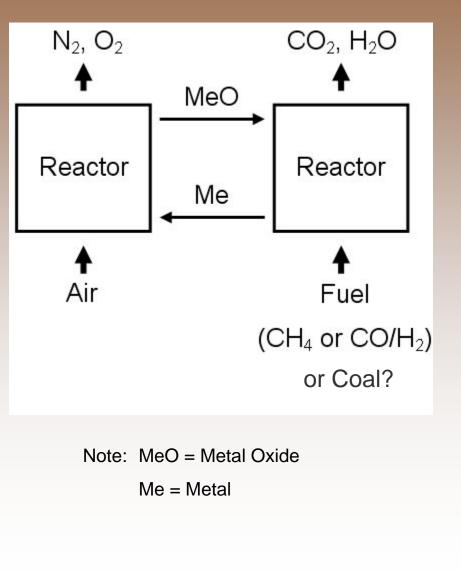


Jupiter Oxy-Fuel plant; Hammond, IN

Studies Beginning at Purdue

- Constant volume or pressure ignition and combustion
 - Flame and ignition characterization studies
 - Pollutant concentrations
 - RFG/O₂% optimization
 - Comparisons with Jupiter pilot reactor
 - Indiana coals considered
- Pressurized studies
 - Control flame instabilities?
 - Future technology areas?
 - IGCC pressurized syngas
 - Chemical looping

Funding from Indiana CCTR



Can hot RFG stabilize $O_2/CO_2/Coal$ flame with lower O_2 concentration?

Some Future Areas

- Chemical Looping Combustion (CLC)
 - Uses metal oxides to provide oxygen for Oxy-Fuel
 - Potentially cheaper than cryogenic
 - Will pulverized coal work with CLC?
 - Survivability of cycled metal
- Can CO₂ be used as oxidizer instead of air?
 - For example, Al and Mg can burn with CO_2 as the oxidizer
 - Eliminates need for sequestration
 - Produces heat (could drive additional power generation) and CO that could be used to make alcohol fuel
 - Optimize for CO or C(s) products?

