Econometric Forecasting Overview

April 30, 2014
Econometric Forecasting

- Econometric models attempt to quantify the relationship between the parameter of interest (dependent variable) and a number of factors (explanatory variables) that affect the dependent variable.

- Example
 - Dependent variable
 - Electric energy
 - Explanatory variable
 - Economic activity
 - Weather (HDD/CDD)
 - Electricity price
 - Natural gas price
Estimating Relationships

- Each explanatory variable affects the output variable in a different way. The relationships (or sensitivities) can be calculated via a number of different methods
 - Can be linear, polynomial, logarithmic, …

\[Y = \beta + \alpha_1 X_1 + \alpha_2 X_2 + \alpha_3 X_3 + ... \]

- Relationships are determined simultaneously to find overall best fit
A Simple Example

• Suppose we have 4 sets of observations with 2 possible explanatory variables

<table>
<thead>
<tr>
<th>Output Y</th>
<th>Variable X_1</th>
<th>Variable X_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>113</td>
<td>120</td>
<td>110</td>
</tr>
<tr>
<td>114</td>
<td>130</td>
<td>90</td>
</tr>
<tr>
<td>121</td>
<td>150</td>
<td>120</td>
</tr>
</tbody>
</table>
A Simple Example

• Including both variables provides a perfect fit
 – Perfect fits are not usually achievable in complex systems

\[Y = 0.2X_1 - 0.1X_2 + 100 \]
Finding a Good Fit

- A number of methods exist for finding the best fitting line, the most common is the ordinary least squares method
 - Ordinary least squares: find the line that minimizes the sum of the squares of the differences between the historical observations and the line
- Often, the “best” fit may not be desirable due to other statistical considerations
 - Some judgment is required to balance various factors
Regression Analysis

Source: Wikipedia.org
Model Error

• In simple terms, model error is the difference between the actual observed dependent variable value and the value that would be derived from the model equation

• Forecasters try to keep model error low but some error is generally unavoidable
Serial Correlation & Heteroskedasticity

- Serial correlation occurs when the error terms from different time periods are correlated
- Heteroskedasticity occurs when the error terms have different variances
- These do not bias the model but results in a false level of accuracy
 - The model estimates may appear to be more precise than they actually are
Serial Correlation

Source: Limitations of the Classical Model, University of Rhode Island
Heteroskedasticity

Heteroskedasticity in a simple, bivariate model.

Source: Introductory Econometrics, Cambridge University Press, 2005
Goodness of Fit

- R^2 – the proportion of the variation in the dependent variable that is explained by the independent variables
- Adjusted R^2 – a similar measure that penalizes for the inclusion of additional explanatory variables
- F-Statistic – a significant F-test indicates that the R^2 is reliable and not a spurious result.
Estimating a Model

• Specify the explanatory variables to be used
• Software (EViews) will determine estimation and provide statistical information
• Repeat using other sets of explanatory variables
Possible Model Formulations

• There are a number of different formulations that can be considered
 – Linear vs. logarithmic
 – First differences (using the change in value between adjacent time periods instead of the values themselves)
 – Moving average or lagged prices
 – Adjust the number of historical observations to be used
Choosing a Model

• We looked for models that provide a good fit (R^2 and Adjusted R^2 close to 1 and F-Statistic probability less than 0.05), pass the tests for serial correlation and heteroskedasticity, and contain an appropriate mix of explanatory variables with correct estimated coefficient signs.
Statistical Tests

• The Durbin-Watson statistic is a check for first-order serial correlation. The statistic ranges from 0 to 4 with 2 meaning no serial correlation; less than 2 being evidence of positive serial correlation; and greater than 2 being evidence of negative serial correlation.
Statistical Tests

• The Correlogram of Residuals and the associated Ljung-Box Q-Statistics up to 12 lags were also inspected to make sure there was no statistically significant serial correlation. (Q-Statistic associated probabilities are greater than 0.05)
Statistical Tests

• The White test was used to check for heteroskedasticity. The test statistic’s associated probabilities should be greater than 0.05.