Electricity Forecasting

Presented by:
Douglas J. Gotham
State Utility Forecasting Group
Energy Center
Purdue University

Presented to:
IE590

February 13, 2012
State Utility Forecasting Group

- Established in 1985 at Purdue
- Initially tasked with developing an electricity forecasting modeling system for the state of Indiana
- Later tasked with annual renewable resource reports
Other SUFG Studies

- Environmental regulations
- Energy efficiency
- Deregulation
- Intermittent resources
- Risk management
- Natural gas
Why Forecast?

• Resource planning
• Resource allocation
• Determining rates
Long-Term vs. Short-Term

- Long-term forecasts typically cover several years and are determined by economic and demographic factors.

- Short-term forecasts typically cover several hours and are determined by temporal and weather factors.
Using the Past to Predict the Future

• What is the next number in the following sequences?
 0, 2, 4, 6, 8, 10,
 0, 1, 4, 9, 16, 25, 36,
 0, 1, 2, 3, 5, 7, 11, 13,
 1, 3, 7, 15, 31,
 0, 1, 2, 3, 5, 8, 13,
 8, 5, 4, 9, 1, 7,
A Simple Example

<table>
<thead>
<tr>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010</td>
</tr>
<tr>
<td>1020</td>
</tr>
<tr>
<td>1030</td>
</tr>
<tr>
<td>1040</td>
</tr>
<tr>
<td>1050</td>
</tr>
<tr>
<td>?</td>
</tr>
<tr>
<td>?</td>
</tr>
<tr>
<td>?</td>
</tr>
</tbody>
</table>
A Little More Difficult

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>1210</td>
<td></td>
</tr>
<tr>
<td>1331</td>
<td></td>
</tr>
<tr>
<td>1464</td>
<td></td>
</tr>
<tr>
<td>1610</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing an increasing trend]
Much More Difficult

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16757</td>
<td>17531</td>
<td>18851</td>
<td>18843</td>
</tr>
<tr>
<td>18254</td>
<td>19966</td>
<td>20910</td>
<td>20842</td>
</tr>
<tr>
<td>19589</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

![Graph showing energy consumption over time]
Much More Difficult

• The numbers on the previous slide were the summer peak demands for Indiana from 2000 to 2008.
• They are affected by a number of factors:
 – Weather
 – Economic activity
 – Price
 – Interruptible customers called upon
 – Price of competing fuels
Question

• How do we find a pattern in these peak demand numbers to predict the future?
Methods of Forecasting

• Time Series
 – trend analysis

• Econometric
 – structural analysis

• End Use
 – engineering analysis
Time Series Forecasting

- Linear Trend
 - Fit the best straight line to the historical data and assume that the future will follow that line
 - works perfectly in the 1st example
 - Many methods exist for finding the best fitting line; the most common is the least squares method

\[Y = \beta + \alpha X \]
Time Series Forecasting

• Polynomial Trend

 – Fit the polynomial curve to the historical data and assume that the future will follow that line

 – Can be done to any order of polynomial (square, cube, etc.) but higher orders are usually needlessly complex

\[Y = \beta + \alpha_1 X + \alpha_2 X^2 + \ldots \]
Time Series Forecasting

• Logarithmic Trend

 – Fit an exponential curve to the historical data and assume that the future will follow that line

 • works perfectly for the 2nd example

\[Y = \beta \alpha^X \]
Good News and Bad News

• The statistical functions in most commercial spreadsheet software packages will calculate many of these for you

• These may not work well when there is a lot of variability in the historical data
 – A number of methods exist for dealing with variability, such as modeling by season and using smoothing or filtering techniques

• If the time series curve does not perfectly fit the historical data, there is model error.
 – There is normally model error when trying to forecast a complex system
Econometric Forecasting

• Econometric models attempt to quantify the relationship between the parameter of interest (output variable) and a number of factors that affect the output variable

• Example
 – Output variable
 – Explanatory variable
 • Economic activity
 • Weather (HDD/CDD)
 • Electricity price
 • Natural gas price
 • Fuel oil price
Estimating Relationships

• Each explanatory variable affects the output variable in a different way. The relationships (or sensitivities) can be calculated via any of the methods used in time series forecasting
 – Can be linear, polynomial, logarithmic, moving averages, …

\[Y = \beta + \alpha_1 X_1 + \alpha_2 X_2 + \alpha_3 X_3 + \ldots \]

• Relationships are determined simultaneously to find overall best fit
A Simple Example

• Suppose we have 4 sets of observations with 2 possible explanatory variables

<table>
<thead>
<tr>
<th>Output Y</th>
<th>Variable X₁</th>
<th>Variable X₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>113</td>
<td>120</td>
<td>110</td>
</tr>
<tr>
<td>114</td>
<td>130</td>
<td>90</td>
</tr>
<tr>
<td>121</td>
<td>150</td>
<td>120</td>
</tr>
</tbody>
</table>
A Simple Example

• Including both variables provides a perfect fit
 – Perfect fits are not usually achievable in complex systems

\[Y = 0.2X_1 - 0.1X_2 + 100 \]
End Use Forecasting

- End use forecasting looks at individual devices, aka end uses (e.g., refrigerators)
- How many refrigerators are out there?
- How much electricity does a refrigerator use?
- How will the number of refrigerators change in the future?
- How will the amount of use per refrigerator change in the future?
- Repeat for other end uses
The Good News

• Account for changes in efficiency levels (new refrigerators tend to be more efficient than older ones) both for new uses and for replacement of old equipment

• Allow for impact of competing fuels (natural gas vs. electricity for heating) or for competing technologies (electric resistance heating vs. heat pump)

• Incorporate and evaluate the impact of demand-side management/conservation programs
The Bad News

- Tremendously data intensive
- Primarily limited to forecasting energy usage, unlike other forecasting methods
 - Most long-term planning electricity forecasting models forecast energy and then derive peak demand from the energy forecast
Example

- State Utility Forecasting Group (SUFG) has electrical energy models for each of 8 utilities in Indiana.
- Utility energy forecasts are built up from sectoral forecasting models:
 - residential
 - commercial
 - industrial
Residential Model Sensitivities

<table>
<thead>
<tr>
<th>10 Percent Increase In</th>
<th>Causes This Percent Change in Electric Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Customers</td>
<td>11.1</td>
</tr>
<tr>
<td>Electric Rates</td>
<td>-2.4</td>
</tr>
<tr>
<td>Natural Gas Price</td>
<td>1.0</td>
</tr>
<tr>
<td>Distillate Oil Prices</td>
<td>0.0</td>
</tr>
<tr>
<td>Appliance Price</td>
<td>-1.8</td>
</tr>
<tr>
<td>Household Income</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Source: SUFG 2009 Forecast
Commercial Model Sensitivities

<table>
<thead>
<tr>
<th>10 Percent Increase In</th>
<th>Causes This Percent Change in Electric Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Rates</td>
<td>-2.5</td>
</tr>
<tr>
<td>Natural Gas Price</td>
<td>0.2</td>
</tr>
<tr>
<td>Distillate Oil Prices</td>
<td>0.0</td>
</tr>
<tr>
<td>Coal Prices</td>
<td>0.0</td>
</tr>
<tr>
<td>Electric Energy-weighted Floor Space</td>
<td>12.0</td>
</tr>
</tbody>
</table>

Source: SUFG 2009 Forecast
Industrial Model Sensitivities

<table>
<thead>
<tr>
<th>10 Percent Increase In</th>
<th>Causes This Percent Change in Electric Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Manufacturing Product</td>
<td>10.0</td>
</tr>
<tr>
<td>Electric Rates</td>
<td>-4.8</td>
</tr>
<tr>
<td>Natural Gas Price</td>
<td>1.4</td>
</tr>
<tr>
<td>Oil Prices</td>
<td>0.9</td>
</tr>
<tr>
<td>Coal Prices</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Source: SUFG 2009 Forecast
Sources of Uncertainty

• Exogenous assumptions
 – forecast is driven by a number of assumptions (e.g., economic activity) about the future

• Stochastic model error
 – it is usually impossible to perfectly estimate the relationship between all possible factors and the output

• Non-stochastic model error
 – bad input data (measurement/estimation error)
Resource Planning

• Target reserve margin

• Loss of load probability (LOLP)

• Expected unserved energy (EUE)
Reserve Margin

\[RM = \frac{capacity - demand}{demand} \times 100\% \]

- Reserve margins are relatively easy to use and understand, but may lead to uneconomical planning decisions
 - reserve margins do not account for differences in reliability for different generating units or for diversity of supply
Loss of Load Probability

• A probabilistic method that accounts for the reliability of the various sources of supply
• Given an expected demand for electricity and a given set of supply resources with assumed outage rates, what is the likelihood that the supply will not be able to meet the demand?
• Planner finds the amount of resources needed to keep the LOLP below a target level
 – industry standard is 1 event per 10 years
Expected Unserved Energy

• Similar calculation as for LOLP
• Instead of tracking the expectation that insufficient generation will be available, one tracks the cumulative amount of the shortfall
 – In LOLP, a 1MW shortfall is the same as a 100MW shortfall
Contact Information

- Doug Gotham
- gotham@purdue.edu
- 765-494-0851
- http://www.purdue.edu/discoverypark/energy/SUFG/