

The Transmission Grid: Understanding How It Works to Understand Who Should Pay

Douglas J. Gotham Director, SUFG January 28th, 2009 OMS Cost Allocation and Regional Planning Workshop

Thanks to:

 Dr. Wayne Galli, Director of Transmission Development for NextEra Energy Resources, for portions of this presentation

What is the Largest, Most Complex Machine Ever Built?

- The space shuttle?
- The Eastern Interconnection?
- The world wide web?
- The Large Hadron Collider?

Thomas Edison

- Advocate of direct current (DC) electric power system
- Founder of General Electric

IRDUE

George Westinghouse

- Advocate of alternating current (AC) electric power system
- Co-founder of Westinghouse Electric

- Direct current (DC)
 - Magnitude of current is constant
- Alternating current (AC)
 - Magnitude of current varies with time

- In the late 19th century, an often vicious battle was waged over whether to use AC or DC for electric power systems
- Edison tried to sway public opinion by claiming that AC was dangerous
 - electrocution of animals
 - development of the electric chair

Discovery Park

PURDUE UNIVERSITY

A Winner!!!

- AC became the current of choice, largely because of the transformer
 - Transformers could easily increase voltage levels to transmit power from the generator and decrease voltage at the load
 - lower losses
- Also, AC is easier to disconnect because the current is equal to zero twice during each cycle

ENERGY CENTER State Utility Forecasting Group (SUFG)

- Loads must be located close to a generator
 - Less than a mile
 - Only cities have access to power
- Small generators
 - High cost

ENERGY CENTER State Utility Forecasting Group (SUFG)

We Add a Transmission Line

PURDUE

With Transmission

- We can build generation in areas removed from the loads
 - More desirable environmental and fuel factors
- We can build larger, more efficient generators
 Economies of scale
- We can get power to remote areas with lower losses
 - Rural electrification

ENERGY CENTER State Utility Forecasting Group (SUFG)

PURDUE

Radial Systems

- Electric power flows from generator to transmission line to distribution system along a single path
- Failure of any component on the path means the lights go out
- This type of system is still used in some developing parts of the world

Parallel Path Systems

• The addition of a second (or more) transmission line increases reliability

iscevery Park

- If a line or transformer fails, power can still flow along another path
- Power losses in the transmission lines are reduced
- But, adding additional lines costs \$\$\$

We Have a Network

Early Utility Systems

- A number of separate utilities operating as islands
- Transmission was built to serve local needs
 - Reliability
 - Allow for larger, more efficient generators located at a distance from the loads

- Maintaining reliability was difficult and expensive with the utilities being electrically separated from each other
 - Each utility would need to build in enough redundancy to handle the problems that might arise, or the customers would have to live with the lights going out
 - It would be difficult for a utility to respond to rapid changes in load levels

Example

- Suppose I have a utility with 500 MW of load, supplied by three generators
 - -2 are 100 MW each
 - 1 is 300 MW
- In order to handle an outage of the largest generator, I would need 300 MW of excess generation capacity

Example w/ Interconnection

- Suppose my neighbor has an identical system
- If we interconnect, we could each carry 150 MW of extra capacity instead of 300 MW
 - Whichever utility experienced the outage would rely on his neighbor for the rest

PURDUE

- Reserve margins can be reduced
 - Saves \$\$\$
- It is easier to follow load changes (ancillary services)
 - More generators means each can handle a smaller portion of the load change
- Reliability is increased
 - My interconnected neighbor can help me keep the lights on when I experience a problem
- Bulk power transactions, power pools, and markets are possible
 - Saves \$\$\$

Liabilities of Interconnection

- It is difficult to control the path over which electrical power flows (loop flow)
 - "Path of least resistance"
 - "Laws of physics"
- It is also more difficult to analyze
- Cascading outages
 - Instead of my neighbor keeping my system up when I have a problem, I pull his down with me 22

Interconnected Grid

Discevery Park

ENERGY CENTER

State Utility Forecasting Group (SUFG)

Source: Based on data from Global Energy Decisions, LLC, Velocity Suite, June 2008

Interconnected Operation

- Power systems are interconnected across large areas. For example, most of North America east of the Rockies (with exceptions for Quebec and most of TX) is an interconnection
- Individual utilities within each interconnection own and operate a small portion of the system (a balancing authority)
- Transmission lines known as tie lines connect the individual utilities to each other

iscevery Park State Utility Forecasting Group (SUFG) Supply and Demand Balance

 Electrical energy cannot be stored easily

ENERGY CENTER

- Must be converted to another form
- Thus, supply and demand must always be kept in balance

What Happens in Vegas...

•does not stay in Vegas

iscovery Park

- Anything that happens in one part of the interconnection affects the rest of the interconnection
- Usually, an event is so small that the impact is lost in the noise of all the other events in the interconnection

State Utility Forecasting Group (SUFG)

ENERGY CENTER

August 14, 2003

scevery Park

Southwest Power Pool 8/14/03

Simple Bi-lateral Transaction

Sale from A to B at 4-5 pm of 100 MW

- Seller decreases generation
- Buyer increases generation

Areas A & B may be separated by thousands of miles. Price may be affected by various factors including transmission congestion

- Physical limits of components
 - Overheating of lines and transformers
 - Line sag
- Stability limits
 - Angular
 - Voltage
- Contingencies
 - Some capability left unused to handle outages

Discovery Park

Congestion

- When these limitations become binding, congestion occurs
- Congestion costs \$\$\$
 - Re-dispatch means using less economic generators
 - Reserve margins may need to be higher to maintain adequate reliability
 - Potential for market power increases
 - Ancillary services

Recent Developments

- Open access/regional transmission organizations
 - Increase in economic transactions
- Environmental considerations
 - Increase in renewable generation
- Increasing consumption
- Very little new transmission constructed

ENERGY CENTER State Utility Forecasting Group (SUFG)

35

PURDUE

Wind Generation

- Over a tenfold increase in installed wind generation this decade in the U.S.
 - 12/31/00 2,566 MW
 - 9/30/08 22,613 MW
- Best wind sites are often located a long distance from the demand
 - Transmission network is not highly developed
- Wind is intermittent, so it does not always produce at full capacity
 - But the transmission system has to be able to handle full capacity

Wind Resources

Installed Wind Capacity

PURDUE

- Renewable Portfolio Standards
- Green consumers
- Future greenhouse gas legislation
- Fossil fuel price volatility

What Does This Mean?

- We have an aging transmission infrastructure
- It is being relied on more heavily than before
 - Increasing demand for electricity
 - Wholesale competition
 - Power markets

iscevery Park

- Diverse sources of generation
- Scheduling maintenance on existing system becomes more difficult
 - When can I take a line out of service?

Reasons to Build New Transmission Lines

- Largely the same as the reason to build the old ones
 - Save \$\$\$
 - Increase reliability
- And some new ones
 - Allow new generation sources
 - Reduce local market power

Many Entities

- Reliability and efficiency benefits are felt throughout the interconnection, not just
- Iocally
 The degree to which each entity is impacted can vary greatly

Summary

- The electric transmission system has had tremendous impact on all of us
- It enables us to get electric power at a lower cost with greater reliability
 - Economic development
 - Fuel diversity
 - Reduced price volatility
 - Renewable resources
 - Market power mitigation