Overview: Wind Energy Technology Fundamentals , the 20% Scenario, and Innovation Opportunities

#### **Paul Veers**

Distinguished Member of the Technical Staff Wind and Water Power Technologies Sandia National Laboratories Albuquerque, NM, USA

> Purdue University April 8, 2010







# Sandia National Laboratories

"Exceptional Service in the National Interest"

- **National Security** Laboratory
- **Broad mission in** developing science and technology applications to meet our rapidly changing, complex national security challenges
- Safety, security and reliability of our nation's nuclear weapons stockpile









#### Our highest goal is to

become the laboratory that the U.S. turns to first for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.



# **Sandia Sites**

Livermore,

California

#### 8500 Employees >7000 in New Mexico

Albuquerque, New Mexico

Kauai, Hawaii Yucca Mountain, Nevada



New Mexico









Pantex, Texas





# <u>Outline</u>

- Wind Turbine design evolution
- Typical modern turbine
- How it works:
  - ✓ Limitations
  - ✓ Opportunities
- 20% wind scenario
- Efforts to enhance the technology



#### **Evolution of U.S. Commercial Wind Technology**





# Wind Turbine Size



Energy Overv

1-MIL

Wind Power – large and small



# Small Wind (1-100 kW)

#### Utility-Scale Wind (1-5 MW)



American Wind Energy Association www.awea.org

# Small Wind Turbines Are Different

# Utility-Scale Wind Power 1,000-3,000 kW wind turbines

- Installed on wind farms, 10-700 MW
- Interconnected to transmission
- Professional maintenance crews
- Class 4-6 (quality) wind resource

#### Small Wind Power up to 100 kW wind turbines

- Installed at individual homes, farms, businesses, schools, etc.
- Interconnected to distribution, on the "customer side" of the meter
- Few moving parts, high reliability, low maintenance
- Class 2-4 (marginal) wind resource



Courtesy Jim Green, NREL

# **Example Small Wind Systems**

#### **Bergey Windpower**

#### **Southwest Windpower**

#### Northern Power Systems

BWC XL.1 1 kW, 8.2 ft Dia. Battery-Charging









#### **Endurance Wind Power Inc.**

Endurance S-250 4.25 kW, 18 ft Dia. Grid-Connect





#### The Change from Small Machines to Large Multi-Mega-Watt Machines





- <u>Above</u>: Tehachapi, CA – 65kW, 900kW, and 3MW machines
- <u>Left</u>: Palm Springs, CA

   field of 65kW with
   four lager machines in
   foreground (~750kW)

#### GE 1.5 MW machines in Fort Sumner, NM and Bonus (Siemens) 2.0 MW machines in Copenhagen Harbor





#### Logistics become difficult as size increases

45-meter Blade Fatigue Test at NREL/NWTC

**50-meter Blade Transport** 

Courtesy of LM Glassfiber

## **Typical Modern Turbine**





#### **Current Wind Turbine Systems**



# **Typical Wind Farm Components**

- Turbine
- Foundations
- Electrical collection
- Power conditioning
- Substation
- SCADA
- Roads
- Maintenance facilities





# Bottom Up Wind Capital Costs (current on-shore)

64% Turbine25% Balance of Plant7% Developer

4% Transportation



Notes: 100MW Wind Power Plant; Flat terrain w/ easy access and good geotechnical conditions; Nominal technology MMW Wind Turbine price; 10% BOP contingency inclusive

ndia

tional

## **Reported Capacity Factors - Trends**



CF = Average Output/ Rated Power



# **Cost of Energy: Sales Prices - Trends**



Rising prices are caused by:

- Weak Dollar
- Growing commodity prices
  - steel
  - copper
  - concrete
- Limited availability of machines (seller's market)



# 20% Wind Energy by 2030

- The Scenario
- Costs
- Benefits
- Summary



20% Wind Energy by 2030 Increasing Wind Energy's Contribution to U.S. Electricity Supply

# **The 20% Technical Report**

- Explores one scenario for reaching 20% wind energy by 2030 and contrasts it to a scenario in which no new U.S. wind power capacity is installed
- Is not a prediction, but an analysis based on one scenario
- Does not assume specific policy support for wind
- Is the work of more than 100 individuals involved from 2006 - 2008 (government, industry, utilities, NGOs)
- Analyzes wind's potential contributions to energy security, economic prosperity and environmental sustainability



# 20% Wind by 2030 Scenario Requires 300 GW





# Resource Potential Exceeds Total Electricity Demand



Energy Overview - 22

<sup>2010</sup> Costs w/o PTC, w/o Transmission or Integration costs

# Cost of Wind and Transmission: **Economically Available**

![](_page_22_Figure_1.jpeg)

# 46 States Will Have Wind Development by 2030 under the 20% Wind Scenario

![](_page_23_Figure_1.jpeg)

## Need for New Transmission: Existing and New in 2030

![](_page_24_Figure_1.jpeg)

#### **Economic Costs of 20% Wind Scenario**

![](_page_25_Figure_1.jpeg)

![](_page_25_Picture_2.jpeg)

Most area available for farming or grazing

## **CO<sub>2</sub> Emissions from the Electricity Sector**

aboratories

![](_page_27_Figure_1.jpeg)

Energy Overview - 28

# **Significant Water Use Savings**

Cumulatively, the 20% Wind Scenario would avoid the consumption of 4 trillion gallons of water through 2030.

The 20% Wind Scenario cuts electric sector water consumption by 17% in 2030.

400 300 200 100 U, n 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 Year

![](_page_28_Picture_4.jpeg)

500

Billion Gallons Saved

# Summary: Costs & Benefits

|                                                                                 | \$43 billion                                                 |  |  |  |  |  |
|---------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|
| Incremental direct cost to society                                              | 50 cents/month/                                              |  |  |  |  |  |
|                                                                                 | household                                                    |  |  |  |  |  |
| Reduction in emissions of greenhouse gasses and avoided carbon regulation costs | 825 million tons of CO <sub>2</sub><br>\$50 to \$145 billion |  |  |  |  |  |
| Reduction in water consumption                                                  | 8% through 2030<br>17% in 2030                               |  |  |  |  |  |
| lobe supported and other economic banafite                                      | 500,000 total with 150,000 direct jobs                       |  |  |  |  |  |
| Jobs supported and other economic benefits                                      | \$2 billion in local<br>annual revenues                      |  |  |  |  |  |
| Reduction in nationwide natural gas use and likely                              | 11%                                                          |  |  |  |  |  |
| savings for all gas consumers                                                   | \$86-214 billion                                             |  |  |  |  |  |
| ources: DOE, 2008 and Hand et al., 2008 Note: All dollar values are in NPV      |                                                              |  |  |  |  |  |

![](_page_30_Picture_0.jpeg)

## **Technology Fundamentals**

![](_page_30_Picture_2.jpeg)

Energy Overview - 31

Measuring and Modeling Dynamic Stall and Unsteady Aerodynamics

#### Visualizing the flow through the rotor

![](_page_31_Picture_2.jpeg)

NASA Ames 80' by 120' Wind Tunnel Test

![](_page_31_Picture_4.jpeg)

![](_page_31_Picture_5.jpeg)

Smoke Test

#### Field Test

![](_page_31_Picture_8.jpeg)

# Wind Power Basics

![](_page_32_Figure_1.jpeg)

Energy Overview - 33

# Turbine Power: What is available and what is useable?

**Regions of the Power Curve** 

- Region I not enough power to overcome friction
- Region II Operate at maximum efficiency at all times
- Region III Fixed power operation

"Rated Power" governs the size and cost of the entire turbine infrastructure

![](_page_33_Figure_6.jpeg)

![](_page_33_Picture_7.jpeg)

#### **U.S. Wind Resource Maps (50 meter elevation)**

![](_page_34_Figure_1.jpeg)

# The wind resource is much better as you go higher above ground

National

Laboratories

![](_page_35_Figure_1.jpeg)

Energy Overview - 36

![](_page_36_Figure_0.jpeg)

# New 80m map – released in 2010

# **Performance Enhancement Options**

![](_page_37_Figure_1.jpeg)

#### Larger Rotor

Rotor *costs* increase with diameter *cubed*, Rotor *power* grows with the diameter *squared* 

#### **Taller Tower**

Tower costs increase with height to the *fourth* power (constrained base diameter)

#### **Greater Output**

The cost benefits are constrained by the *squared-cubed* law

We can only win this battle if we build rotors that are smarter and components that are lighter to beat the squared-cubed law.

![](_page_37_Picture_9.jpeg)

![](_page_38_Picture_0.jpeg)

# Wind Turbine Rotor Design Challenge

Numerous existing manufacturers of large composite structures in Military and Aerospace

Technology/Expertise does not generally transfer

High-end military ~ \$1000/lb Commercial Aerospace ~ \$100/lb

Wind Turbine Blade ~ \$6/lb

**10<sup>6</sup> cycles** 

10<sup>6</sup> cycles

10<sup>8</sup> cycles

![](_page_38_Picture_10.jpeg)

# **Technology Challenges from the 20% Report**

#### Challenges:

- Cost of Energy (Capital Cost / Energy Production)
- Reliability and Maintenance Cost
- Public acceptance and Investor Confidence

#### Potential Impact from Rotor Enhancements:

- Greater energy capture on a given tower/drivetrain
- Lower tower-top mass for given rotor size
- Lower Cost of Energy (COE)
- Increased deployment of wind power

![](_page_39_Picture_10.jpeg)

# Technology Advancements Under Sandia's Blade Program

- Prototype Sub-scale Blades Manufactured (9 meters)
  - CX-100
    - Carbon spar cap
    - · Glass skin and shear web
  - **TX-100** 
    - Carbon triax in skin for passive bend-twist coupling
  - BSDS (<u>B</u>lade <u>System</u> <u>D</u>esign <u>S</u>tudy)
    - Flatback airfoils
    - Carbon spar cap
    - Constant spar cap thickness

![](_page_40_Figure_11.jpeg)

![](_page_40_Picture_12.jpeg)

#### TX-100 skin w/ off-axis carbon fiber

![](_page_40_Figure_14.jpeg)

# **Previous Load Control Concepts**

#### Past work has investigated blade load control

- Individual blade pitch (rather than collective)
  - Pitches entire blade (slow response)
  - Responds to some "average" blade load
  - Current "state-of-the-art" in industry research
- Passive bend/twist or sweep/twist blade load control (load causes blade to twist and reduce load)
  - Response fixed at time of design
  - Unable to tailor to specific site/wind conditions

![](_page_41_Picture_9.jpeg)

# Coupled Blade

Passive Bend-Twist

#### Knight & Carver Swept (STAR) Blade

![](_page_42_Picture_1.jpeg)

![](_page_42_Picture_2.jpeg)

Energy Overview - 43

# **Smart-Blade Approach**

# Investigate use of distributed active aerodynamic load control devices to reduce locally fluctuating blade loads

- Improved load control capability
  - Respond to loads at locations along blade
  - Respond to site-specific conditions

#### Utilize full system dynamic simulations

- Analyze system response
- Develop control system

#### Develop prototype control devices

- Microtabs, microflaps, morphing trailing edges
- Fast response, low loads
- Study impact on flow field (UC Davis)
  - Analytical (2-D and 3-D CFD)/experimental

![](_page_43_Figure_13.jpeg)

![](_page_43_Picture_14.jpeg)

#### **Load Control Decreases Blade Motion & Fatigue**

![](_page_44_Figure_1.jpeg)

Laboratories

## Grow the Rotor (GTR) Concept

#### Comparable Blade Flap Fatigue Damage – 1.5MW

6

![](_page_45_Figure_2.jpeg)

![](_page_46_Figure_0.jpeg)

# Why Offshore Wind ?

Land-based sites are not close to population centers

Cities are close to offshore wind sites

28 coastal states use 78% of the electricity in US

**US** Population Concentration

#### U.S. Offshore Wind Resource

![](_page_47_Figure_6.jpeg)

#### Offshore Wind Turbine Development for Deep Water

![](_page_48_Figure_1.jpeg)

![](_page_48_Picture_2.jpeg)

# **Floating Wind Turbines**

5

#### **Technical data**

- WTG:
  Turbine weight:
  Turbine height
  Rotor diameter:
  Draft hull:
  Displacement:
  Diameter at water line:
  Diam. submerged body:
  Water depths:
- Mooring:

2,3 MVV 138 tonnes 65 m 82,4 m 100 m 5300 m<sup>3</sup> 6 m 8,3 m 120-700 metres 3 lines

![](_page_49_Picture_5.jpeg)

Statoil/Hydro (Norway) tested a floating system in 2009.

#### StatoilHydro

Sandia

National Laboratories

![](_page_50_Picture_0.jpeg)

# **Grid Integration and Transmission**

![](_page_50_Picture_2.jpeg)

Energy Overview - 51

# Wind Grid Integration and Transmission Challenges

- Inability to dispatch
  - Weather determines output
- Variability
  - Makes it more difficult to balance load
- Uncertainty
  - Can be forecasted to a large extent
- Different electrical characteristics
  - Lower inertia, voltage tolerance, reactive controls
  - Still compatible with the grid

![](_page_51_Picture_10.jpeg)

# Wind Turbine Technology Advancements

- Low-Voltage Ride-Through
  - Wind plants can contribute to system stability during a disturbance
- Voltage Control Capability
  - Capable of supplying reactive power at the point-ofinterconnection
- SCADA Integration
  - Ability to provide frequency response
- Wind Forecasting
  - Reduces wind output uncertainty by using wind forecasts that incorporate meteorological data
  - Allows operators to anticipate wind generation levels and adjust other generators output

![](_page_52_Picture_10.jpeg)

# **Balancing Area Size and Flexibility**

#### BA functions

- Balance demand (load) & supply (generation)
- Support interconnection frequency
- Maintain desired level of interchange with other BAs
- Larger BAs are generally more efficient
  - More flexibility
  - BA consolidation being explored in some areas

![](_page_53_Figure_8.jpeg)

# **Geographic Diversity**

Substantially reduces short-term and long term variability

![](_page_54_Figure_2.jpeg)

# **Cost of Wind Integration...**

![](_page_55_Figure_1.jpeg)

![](_page_55_Picture_2.jpeg)

# Cost of Wind Integration is <0.5 cents/kWh</pre>

| Date     | Study         | Wind Capacity<br>Penetration (%) | Regulation<br>Cost (\$/MWh) | Load Following<br>Cost (\$/MWh) | Unit Commit-<br>ment Cost<br>(\$/MWh) | Gas Supply<br>Cost<br>(\$/MWh) |   | Tot Oper. Cost<br>Impact<br>(\$/MWh) |
|----------|---------------|----------------------------------|-----------------------------|---------------------------------|---------------------------------------|--------------------------------|---|--------------------------------------|
| May 03   | Xcel-UWIG     | 3.5                              | 0                           | 0.41                            | 1.44                                  | na                             |   | 1.85                                 |
| Sep 04   | Xcel-MNDOC    | 15                               | 0.23                        | na                              | 4.37                                  | na                             |   | 4.60                                 |
| June 06  | CA RPS        | 4                                | 0.45*                       | trace                           | na                                    | na                             |   | 0.45                                 |
| Feb 07   | GE/Pier/CAIAP | 20                               | 0-0.69                      | trace                           | na***                                 | na                             |   | 0-0.69***                            |
| June 03  | We Energies   | 4                                | 1.12                        | 0.09                            | 0.69                                  | na                             |   | 1.90                                 |
| June 03  | We Energies   | 29                               | 1.02                        | 0.15                            | 1.75                                  | na                             |   | 2.92                                 |
| 2005     | PacifiCorp    | 20                               | 0                           | 1.6                             | 3.0                                   | na                             |   | 4.60                                 |
| April 06 | Xcel-PSCo     | 10                               | 0.20                        | na                              | 2.26                                  | 1.26                           |   | 3.72                                 |
| April 06 | Xcel-PSCo     | 15                               | 0.20                        | na                              | 3.32                                  | 1.45                           |   | 4.97                                 |
| Dec 06   | MN 20%        | 31**                             |                             |                                 |                                       |                                |   | 4.41**                               |
| Jul 07   | APS           | 14.8                             | 0.37                        | 2.65                            | 1.06                                  | na                             | T | 4.08                                 |

Source: UWIG

\* 3-year average; total is non-market cost

\*\* highest integration cost of 3 years; 30.7% capacity penetration corresponding to 25% energy penetration;

24.7% capacity penetration at 20% energy penetration

\*\*\* found \$4.37/MWh reduction in UC cost when wind forecasting is used in UC decision

# **Grid Issues: Summary**

- Grid Integration of wind has technical and cost impacts
  - Reasonable 25% penetration level by energy
  - Dedicated "backup generation" or storage not required

# Things that can be done to reduce impacts

- Geographical diversity
- Better forecasting and implementation in operations
- Larger balancing areas
- More flexibility with generation (and load)
- Perform detailed wind integration studies

![](_page_57_Picture_10.jpeg)

# WHAT DO PEOPLE REALLY CARE ABOUT?

![](_page_58_Picture_1.jpeg)

Energy Overview - 59

# **Bird Collisions & Mortality**

- Problem documented in Altamont Pass
  - One of nation's largest concentrations of federally-protected raptors
  - Abundant prey base (migration path)
  - Heavy year-round raptor use

![](_page_59_Picture_5.jpeg)

![](_page_59_Figure_6.jpeg)

![](_page_60_Figure_0.jpeg)

Acoustic Emission: Noise

![](_page_60_Picture_2.jpeg)

![](_page_60_Picture_3.jpeg)

## **Benefits of Wind Power**

#### Economic Development

- Jobs, lease payments, tax revenue
- Cost Stability
- Resource Diversity
  - Domestic, inexhaustible, reduced risk
- Environmental
  - no CO<sub>2</sub>, SO<sub>2</sub>, NO<sub>x</sub>, mercury
  - no mining or drilling
  - no water use

![](_page_61_Picture_10.jpeg)

![](_page_61_Figure_11.jpeg)

#### Figure 1-14. National water savings from the 20% Wind Scenario

#### World-Wide Growth in Energy Demand Will Require all Available Energy Technology Options Integrated into a System

![](_page_62_Picture_1.jpeg)

![](_page_62_Picture_2.jpeg)

![](_page_62_Picture_3.jpeg)

![](_page_62_Picture_4.jpeg)

![](_page_62_Picture_5.jpeg)

![](_page_62_Picture_6.jpeg)

![](_page_62_Picture_7.jpeg)

- A complete portfolio of supply options: renewables, fossil, nuclear
- Highly efficient and environmentally benign technologies
- Fault-tolerant, self-healing infrastructures
- Enhance physical and cyber security and safety

![](_page_62_Picture_12.jpeg)

#### **Questions?**

#### The view from 250 feet...

![](_page_63_Picture_2.jpeg)

![](_page_63_Picture_3.jpeg)

![](_page_63_Picture_4.jpeg)