Finding Lead Protein Disulfide Isomerase Inhibitors For Glioma Treatments
Kelly Torolski, Kirin Cromer, Dr. Nouri Neamati, Andrea Shergalis
The University of Michigan Translational Oncology Program

Introduction

• Protein Disulfide Isomerase (PDI) is responsible for maintaining cellular homeostasis by mediating oxidative protein folding.
• Glioma is the most common type of central nervous system tumor with few current treatment options.
• PDI is over expressed in brain cancer cells.
• Knockdown of PDI inhibits cancer proliferation and sensitizes glioma cells to chemotherapy.

Objective

The goal of this study is to perform thermal shift and insulin turbidity assay’s to uncover lead PDI inhibitors that bind to a novel site for the treatment of Glioma.

Methods

Thermal Shift Assay:
- Each drug candidate’s Thermal Stability was tested using a PCR machine.
- A melt curve and melting temperature (T_m) was uncovered and results were analyzed using Protein Thermal Shift Software.
- PACMA31 and Estradiol were used as positive controls to hypothesize each compound’s exact binding location.

Insulin Turbidity Assay:
- The average inhibition was taken at 50 minutes after insulin reduction began.
- The compounds with at least 40% inhibition were considered active and were re-screened using 3 fold dilutions.

Results

Thermal Shift Assay:
- 45 compounds did not significantly shift PDI’s melting temperature (dT_m<± 1°C).
- 29 compounds shifted the melting temperature of PDI with statistical significance (dT_m>± 1°C).

Insulin Turbidity Assay:
- 19 active compounds were discovered.

Conclusions

14 compounds were found to be promising targets for Brain Cancer treatment: active inhibitors with an affinity for PDI.

Next Steps

- Follow up experiments on potency and reversibility.
- Test toxicity and membrane permeability.
- Mouse trials.
- Pre-clinical Trials.

Acknowledgments

My research could not have been possible without the help of Dr. Nouri Neamati, Andrea Shergalis, and Ms. Julie Smith.

References